Studi Efisiensi dan Isoterm Adsorpsi Remazol Black B Menggunakan Karbon dari Tempurung Kelapa yang Diaktivasi Secara Pirolisis.

Authors

  • I Dewa Ketut Sastrawidana Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.23887/wms.v16i1.45288

Keywords:

karbon tempurung kelapa, pirolisis, remazol black B, efisiensi adsorpsi, isoterm adsorpsi

Abstract

Air limbah tekstil dengan intensitas warna tinggi bersumber dari zat wana sintetik yang bersifat toksik dan rekalsitran dapat menimbulkan permasalahan serius terhadap lingkungan jika tidak ditangani dengan baik. Tujuan dari penelitian ini adalah mengkaji efisiensi adsorpsi, kondisi lingkungan optimum dan pola isotherm adsorpi dari larutan zat warna Remazol Black B menggunakan karbon dari tempurung kelapa yang tidak diaktivasi dan diaktivasi secara pirolisis pada suhu 900oC. Proses adsorpsi dilakukan menggunakan teknik batch dengan parameter operasional yang diamati meliputi pengaruh pH, konsentrasi zat warna dan lama waktu kontak. Pola isoterm adsorpsi dianalisis menggunakan model isoterm adsorpsi Langmuir dan Freundlich. Hasil penelitian menunjukkan bahwa efisiensi adsorpsi Remazol Black B menggunakan karbon dari tempurung kelapa tanpa diaktivasi dan diaktivasi suhu 900oC adalah 32,16% dan 90,68% yang berlangsung pada kondisi pH 5, konsentrasi zat warna 200 mg/L dengan lama waktu kontak 60 menit. Model isoterm adsorpsi lebih mengikuti model isoterm adsorpsi Langmuir dibandingkan isoterm adsorpsi Freundlich. Dengan demikian, karbon dari tempurung kelapa yang diaktivasi suhu 900oC prospektif dikembangkan sebagai adsorben untuk pengolahan air limbah tekstil.

Author Biography

I Dewa Ketut Sastrawidana, Universitas Pendidikan Ganesha

Chemistry

References

Adeyi, A.A., Mohammed, I.A., Yusuff, A.S., Olateju, I.I., Popoola, L.T. (2014). Textile wastewater treatment and color removal using chemically activated sawdust. J. Bioprocess. Chem. Eng. 1, 1-6.

Afanga, H., Zazou, H., Titchou, F. E., Rakhila, Y., Akbour, R. A., Elmchaouri, A., Ghanbaja, J., Hamdani, M. (2020). Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics. Sustain. Environ. Res. 30, 1-11.

Agustina, T. E., Melwita, E., Bahrin, D., Gayatri, R., Purwaningtyas, I.F. (2020). Synthesis of nano-photocatalyst ZnO-natural zeolite to degrade procion red. Int. J. Technol. 11, 472-481.

Al-Kdasi, A., Idris, A., Saed, K., Guan, C. T. (2005). Treatment of textile wastewater by advanced oxidation processes: A review. Glob. Nest. Int. J. 6, 222-230.

Ali, N., Awais, Kamal, T., Ul-Islam, M., Khan, A., Shah, S. J., Zada, A. (2018). Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int. J. Biol. Macromol.111, 832-838.

Chen, W.S., Chen, Y.C., Lee, C.H. (2022). Modified activated carbon for copper ion removal from aqueous solution. Processes. 10, 1-16.

Dantas, T. L. P., Mendonca, V. P., Jose, H. J., Rodrigues, A. E., Moreira, R. F. P. M. (2006). Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon. Chem. Eng. J. 118, 77.

Elleta, O.A.A., Mustapha, S.I., Ajayi, O.A., Ahmed, A.T. (2018). Optimization of dye removal from textile wastewater using activated carbon from sawdust. Niger. J. Technol. Develop. 15, 26-32.

Environmental Protection Agency order Huan-Shu-Shui-Tzu No. 1030005842. 2014.

Foroutan, R., Peighambardoust, S.J., Peighambardoust, S.H., Pateiro, M., Lorenzo, J.M. (2021). Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: A kinetic, equilibrium and thermodynamic study. Molecules. 26, 1-19.

Ghaly, A.E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V. (2014). Production, characterization and treatment textile effluent: A critical review. J. Chem. Eng. Proc. Technol. 5, 1-18.

Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A. (2011). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. J. Hazard. Mater.186, 891–901.

Hammood, Z.A., Chyad, T.F., Al-Saedi, L. (2021). Adsorption performance of dyes over zeolite for textile wastewater treatment. Ecol. Chem. Eng. 28, 329-337.

Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 18, 393-415.

Hussein, F.H. (2013). Chemical properties of treated textile dyeing wastewater. Asian. J. Chem. 25, 9393-9400.

Hussein, F. H., Abass, T. A. (2010). Solar photolysis and photocatalytic treatment of textile industrial wastewater. Int. J. Chem. Sci, 8, 1409-1420.

Ilhan, F., Ulucan-Altuntas, K., Dogan, C., Kurt, U. (2019). Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation. Desalin. Water. Treat. 162, 142-148.

Ip, A.W.M., Barford, J.P., McKay, G. (2010). A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem. Eng. J. 157, 434-442.

Khaled, A., El Nemr, A., El-Sikaily, A., Abdelwahab, O. (2009). Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J. Hazard. Mater. 165,100–110.

Khan, W. Z., Najeeb, I., Ishtique, S. (2016). Photocatalytic degradation of a real textile wastewater using titanium dioxide, zinc oxide and hydrogen peroxide. Int. J. Eng. Sci, 5, 61-70.

Lima, E. C., Carmalin, S. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 150, 1-17.

Lin, Y.H., Ho, B.H. (2022). Kinetics and performance of biological activated carbon reactor for advanced treatment of textile dye wastewater. Processes. 2, 1-20.

Meko, R.L. (2021). Adsorption of reactive dyes from textile wastewater using corn stalk activated carbon. J. Adv. Chem. Eng. 11, 1-3.

Mirbolooki, M., Amirnezhad, R., Pendashteh, A. R. (2017). Treatment of high saline textile wastewater by activated sludge microorganism. J. Appl. Res. Technol. 15, 167-172.

Ozmen, E.Y., Sezgin, M., Yilmaz, A., Yilmaz, M. (2008). Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour. Technol. 99, 526-531.

Parmar, N. D., Shukla, S.R. (2018). Decolourization of dye wastewater by microbial methods: A review. Indian. J. Chem. Technol. 25, 315-323.

Patanjali, P., Chopra, I., Mandal, A., Singh, R. (2021). Kinetics and isotherm studies for adsorptive removal of methylene blue from aqueous solutions using organoclay. Indian. J. Chem. Technol. 28, 86-93.

Patel H. (2018). Charcoal as an adsorbent for textile wastewater treatment. Separ. Sci. Tech. 53, 2797-2812.

Patil, A. D., Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as an advanced oxidation process. J. Environ. Sci. Toxicol. Food. Technol. 8, 29-32.

Rahman, F. B. A., Akter, M. (2016). Removal of dyes form textile wastewater by adsorption using shrimp shell. Int. J. Waste. Resour. 6, 1-5.

Rahman, M.M., Bari, Q.H., Yousuf, M.A. (2011). Treatment of textile wastewater with activated carbon produced from rice husk. J. Eng. Sci. 2, 73-79.

Rashtbari, Y., Afshin, S., Hamzezadeh, A., Abazari, M., Poureshgh, Y., Fazlzadeh, M. (2020). Application of powdered activated carbon coated with zinc oxide nanoparticles prepared using a green synthesis in removal of Reactive Blue 19 and Reactive Black-5: adsorption isotherm and kinetic models. Desalin.Water Treat. 179,354–367.

Sastrawidana, D. K., Rachmawati, D. O., Sudiana, K. (2018). Color removal of textile wastewater using indirect electrochemical oxidation with multi carbon electrodes. EnvironmentAsia, 11, 170-181.

Simphiwe, P., Buthelezi, Ademola, O., Olaniran, Pillay, B. (2012). Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260-14274.

Somasundaram, S., Sekar, K., Gupta, V.K., Ganesan, S.(2013). Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture. J.Mol.Liq. 177, 416-425.

Sucipta, M., Negara, D.N.K.P., Nindhia, T.G.T., Surata, I.W. (2021). Morphology and surface characteristics of bamboo activated carbon chemically activated under different immersion time. Int. J. Global Energy Issues. 43, 135-146.

Sudiana, K., Sastrawidana, I. D. K., Sukarta, N. (2018). Decolorization study of remazol black B textile dye using local fungi of Ganoderma sp. and their ligninolytic enzymes. J. Environ. Sci. Technol. 11, 16-22.

Syamani, F. A. (2020). Cellulose-based membrane for adsorption of dye in batik industry wastewater. J. Hydrol. 4, 281-283.

Tanthapanichakoon, W., Ariyadejwanich, P., Japthong, P., Nakagawa, K., Mukai, S. R., Tamon, H. (2005). Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water. Res. 39, 1347-1353.

Upadhye, V. B., Joshi, S.S. (2012). Advances in wastewater treatment: A review. (2012). Int. J. Chem. Sci. Appl. 3, 264-268.

Xia, K., Liu, X., Wang, W., Yang, X., Zhang, X. (2020). Synthesis of modified starch/polyvinyl alcohol composite for treating textile wastewater. Polymers. 12, 1-13.

Yaseen, D.A., Scholz, M.(2016). Shallow pond systems planted with Lemna minor treating azo dyes. 2016. Ecol.Eng. 94, 295-305.

Downloads

Published

2022-04-13

Issue

Section

Articles