ANALISIS PEMILIHAN CLUSTER OPTIMAL DALAM SEGMENTASI PELANGGAN TOKO RETAIL
DOI:
https://doi.org/10.23887/jptk-undiksha.v18i2.37426Keywords:
Segmentasi Pelanggan, K-Medoids, X-Means, K-Means, DBIAbstract
Saat ini pemanfaatan data menjadi fokus dalam bidang pemasaran khususnya untuk menyusun strategi. Agar strategi pemasaran bisa tepat sasaran dibutuhkan segmentasi pelanggan. Data mining khususnya clustering mampu membantu proses segmentasi pelanggan. Dalam penelitian ini, data mining diimplementasikan untuk segmentasi pelanggan UD. XYZ dengan metode K-Means, K-medoids, dan Means.. Tujuan penelitian ini adalah mencari metode dan nilai k terbaik yang dihasilkan dari tiga metode clustering. Penelitian ini menyajikan proses Data Mining dengan menggabungkan model RFM dengan algoritma clustering K-Medoids, X-Means, dan K-Means. Dataset yang telah diimplementasikan ke dalam model RFM digunakan sebagai bahan pengolahan data. Data transaksi dengan jumlah 153.492 diimplementasikan ke dalam model RFM menjadi 10.145 data untuk dilakukan identifikasi pelanggan potensial. Inisialisasi cluster awal pada metode K-Medoids, X-Means, dan K-Means dilakukan secara random. Nilai k dalam penelitian ini diinisialisasi dari 1 sampai 10. Nilai k diimplementasikan secara berulang dan dihitung validasi cluster menggunakan metode David Bouldin Index (DBI) dan jaraj rata-rata cluster dengan centroid. Hasil penelitian menunjukkan K-medoids memiliki nilai validitas yang lebih baik dibandingkan dengan X-Means dan K-Means. Rata-rata nilai DBI yang dihasilkan metode K-Medoids adalah 0,540778. Jumlah cluster terbaik yang dihasilkan adalah 5 cluster, hal ini ditentukan dengan mempertimbangkan jumlah persebaran data pada k = 5 yang menghasilkan nilai sama pada metode K-Medoids, X-Means, dan K-Means. Tingkatan pelanggan yang terbentuk adalah About To Sleep, Customer Needing Attention, Recent Customer, Potential Loyalist, dan Loyal Customers.
Downloads
Published
Issue
Section
License
Authors who publish with the JPTK agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)