PERBANDINGAN ALGORITMA FUZZY C-MEANS DAN ALGORITMA NAIVE BAYES DALAM MENENTUKAN KELUARGA PENERIMA MANFAAT (KPM) BERDASARKAN STATUS SOSIAL EKONOMI (SSE) TERENDAH

Authors

  • Putu Satya Saputra

DOI:

https://doi.org/10.23887/jstundiksha.v10i1.23340

Keywords:

data mining, naïve bayes, fuzzy c-means, confusion matrix, bdt

Abstract

Penelitian ini bertujuan untuk mengetahui : hasil clustering algoritma Fuzzy C-means, hasil klasifikasi Naïve Bayes, dan tingkat akurasi penerapan Fuzzy C-means dan Naïve Bayes dalam penentuan penerima bantuan sosial di Kabupaten Buleleng berdasarkan Basis Data Terpadu (BDT). Data yang digunakan yaitu Basis Data Terpadu sesuai Kepmensos No. 71/huk/2018 yang didapat di Bidang Perlindungan dan Jaminan Sosial Dinas Sosial Kabupaten Buleleng. Data tersebut dikelompokkan menjadi 3 kelompok yaitu penerima bantuan Program Keluarga Harapan (PKH), Bantuan Sosial Pangan (BSP) dan Penerima Bantuan Iuran (PBI) Jaminan Kesehatan. Metode perhitungan akurasi data mining menggunakan confusion matrix. Hasil implementasi algoritma dengan 1350 data keluarga menunjukan tingkat akurasi yang diperoleh algoritma Naïve Bayes lebih baik dari pada Fuzzy C-means. Nilai akurasi Naïve bayes sebesar 74% dan akurasi Fuzzy C-means sebesar 67%. Dari pengujian yang telah dilakukan dengan menggunakan perhitungan confusion matrix didapatkan hasil algoritma yang efektif digunakan dalam menentukan keluarga penerima manfaat tersebut adalah algoritma Naïve Bayes.

Downloads

Published

2021-03-24

How to Cite

Saputra, P. S. (2021). PERBANDINGAN ALGORITMA FUZZY C-MEANS DAN ALGORITMA NAIVE BAYES DALAM MENENTUKAN KELUARGA PENERIMA MANFAAT (KPM) BERDASARKAN STATUS SOSIAL EKONOMI (SSE) TERENDAH. JST (Jurnal Sains Dan Teknologi), 10(1), 1–8. https://doi.org/10.23887/jstundiksha.v10i1.23340

Issue

Section

Articles