IMPLEMENTASI GREEDY FORWARD SELECTION UNTUK PREDIKSI METODE PENYAKIT KUTIL MENGGUNAKAN DECISION TREE
DOI:
https://doi.org/10.23887/jstundiksha.v9i1.24896Keywords:
Penyakit Kutil, Cryotherapy, Immunotherapy, Decision Tree, Greedy Forward SelectionAbstract
Penyakit kutil dapat ditangani dengan berbagai metode seperti cryotherapy dan immunotherapy, akan tetapi dokter belum mengetahui metode pengobatan yang paling tepat untuk pasien, sehingga diperlukan pengujian agar dapat diketahui metode yang paling tepat untuk pasien. Penelitian ini menggunakan dataset cryotherapy dan immunotherapy dengan menggunakan algoritma klasifikasi Decision Tree. Pada dataset ini terdapat atribut atau fitur yang tidak relevan sehingga dilakukan seleksi fitur menggunakan Greedy Forward Selection. Hasil penelitian ini akan dilakukan perbandingan kinerja dari algoritma Decision Tree tanpa seleksi fitur Greedy Forward Selection dengan Decision Tree yang di integrasikan pada seleksi fitur Greedy Forward Selection dan pemilihan metode pengobatan penyakit kutil yang terbaik.
References
Adeyemo, O. ., & Adeyeye, T. . (2015). Comparative Study of ID3/C4 . 5 Decision tree and Multilayer Perceptron Algorithms for the Prediction of Typhoid Fever. African Journal of Computing & ICT, 8(1), 103–112. https://doi.org/10.15388/ioi.2015.04
Alpaydın Ethem. (2010). Introduction to Machine Learning Second Edition (2nd ed.; T. Dietterich, ed.). London: MIT.
Astarini, I. A., Chappell, A., Scheuring, D., Thompson, S. M., & Miller, C. (2016). Optimasi Metode Cryotherapy untuk Mengeliminasi Virus pada Tunas Kentang In Vitro ( Optimation of Cryotherapy Method to Eliminate Virus on In Vitro Potato Shoot Tips ). J. Hort, (2012).
Bramer, M. (2016). Principles of Data Mining. https://doi.org/10.1007/978-1-84628-766-4
Catal, C., & Diri, B. (2009). A systematic review of software fault prediction studies. Expert Systems with Applications, 36(4), 7346–7354. https://doi.org/10.1016/j.eswa.2008.10.027
Durairaj, M., & Kalaiselvi, G. (2015). Prediction Of Diabetes Using Soft Computing Techniques-A Survey. IInternational Journal Of Scientific & Technology Research, 4(03), 190–192. Retrieved from www.ijstr.org
Gayatri, N., Nickolas, S., & Reddy, A. V. (2010). Feature Selection Using Decision Tree Induction in Class level Metrics Dataset for Software Defect Predictions. Proceedings of the World Congress on Engineering and Computer Science 2010, I.
Gorunescu, F. (2011). Data mining: concepts and techniques. In Springer. https://doi.org/10.1007/978-3-642-19721-5
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
Khozeimeh, F., Alizadehsani, R., Roshanzamir, M., Khosravi, A., Layegh, P., & Nahavandi, S. (2017). An expert system for selecting wart treatment method. Computers in Biology and Medicine, 81(December 2016), 167–175. https://doi.org/10.1016/j.compbiomed.2017.01.001
Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction using ensemble learning on selected features. Information and Software Technology, 58, 388–402. https://doi.org/10.1016/j.infsof.2014.07.005
Nugroho, H. W., Adji, T. B., & Setiawan, N. A. (2018). Random Forest Weighting based Feature Selection for C4 . 5 Algorithm on Wart Treatment Selection Method. 8(5), 1858–1863.
Rohman, A., Suhartono, V., & Supriyanto, C. (2017). Penerapan Algoritma C4.5 berbasis Adaboost untuk Prediksi Penyakit Jantung. Jurnal Teknologi Informasi, 13, 13–19.
Sumeet, D., & Xian, D. (2011). Data Mining and Machine Learning in Cybersecurity.
Wahono, R. S. (2015). A Systematic Literature Review of Software Defect Prediction : Research Trends , Datasets , Methods and Frameworks. Journal of Software Engineering, 1(1).
Wu, X., & Kumar, V. (2009). The Top Ten Algorithms in Data Mining (V. Kumar, ed.). Boca Raton, London, New York: CRC Press taylor & Francis Group.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)