Elektrolit Polimer Padat dari Pencampuran PVDF-HFP dan PEO serta Modifikasi Filler Sebagai Bahan Dasar Baterai Lithium-Ion
DOI:
https://doi.org/10.23887/jstundiksha.v12i1.45639Keywords:
Elektrolit, Polimer, Poly Vinylidene Fluoride- Hexafluoropropylene, Poly(Ethylene Oxide), KonduktivitasAbstract
Baterai lithium-ion sering mengalami masalah keamanan terkait dengan penggunaan elektrolit cair yang mudah terbakar. Untuk mengatasi masalah ini, elektrolit polimer padat digunakan sebagai pengganti elektrolit cair ; namun sampai saat ini pengembangannya dari segi konduktivitas ionik masih kurang maksimal. Untuk meningkatkan kualitas elektrolit polimer padat, banyak peneliti menggunakan polimer inang yang memiliki sifat dan keunggulan yang baik, salah satunya adalah PEO. Satu kelemahan elektrolit polimer padat yang berbasis PEO adalah kristalinitas tinggi yang menyebabkan konduktivitas ioniknya menjadi rendah. Kelemahan ini dapat dihilangkan dengan menggabungkan PEO dengan polimer lain yaitu PVDF-HFP. Penelitian ini bertujuan untuk menghasilkan lembaran polimer elektrolit yang berisi kombinasi PEO dan PVDF-HFP sebagai polimer, yang direndam di 2% asam sulfat sebagai filler, LiBOB sebagai garam lithium dan menganalisis sifat-sifat baik morfologi, kristalinitas dan konduktivitas ioniknya. Karakterisasi lembaran elektrolit dilakukan menggunakan SEM, XRD, dan EIS. Lembaran elektrolit polimer padat yang dihasilkan menunjukkan bahwa morfologi permukaan pada lembar elektrolit polimer padat berpori dengan porositas sebesar 43,27 %, kemudian Kristalinitas dari lembar sebesar 28,254 % dan konduktivitas ionik nya sebesar 5,626 x S/cm.
References
Banitaba, S. N., Semnani, D., Soureshjani, E. H., Rezaei, B., & Ensafi, A. A. (2020). Effect of Titanium Dioxide and Zinc Oxide Fillers on Morphology, Electrochemical and Mechanical Properties of the Peo-Based Nanofibers, Applicable as an Electrolyte for Lithium-Ion Batteries.,. Materials Research Express, 6(8), 1. https://doi.org/10.1088/2053-1591/ab25cd.
Cheung, K. H., Pabbruwe, M. B., Chen, W. F., Koshy, P., & Sorrell, C. . (2021). Thermodynamic and Microstructural Analyses of Photocatalytic TiO_2 from the Anodization of Biomedical-Grade T〖i_6 al〗_4v in Phosphoric Acid or Sulfuric Acid. Ceramics International, 47(2), 1613–1614. https://doi.org/10.1016/j.ceramint.2020.08.277.
Cheung, S. K., & Joyce Lok YinKwan. (2021). Parents’ perceived goals for early mathematics learning and their relations with children’s motivation to learn mathematics. Early Childhood Research Quarterly, 56(3), 90–102. https://doi.org/10.1016/j.ecresq.2021.03.003.
Didwal, P. N., Singhbabu, Y. N., Verma, R., Sung, B. J., Lee, G. H., Lee, J. S., … Park, C. J. (2021). An Advanced Solid Polymer Electrolyte Composed of Poly (Propylene Carbonate) and Mesoporous Silica Nanoparticles for Use in All-Solid-State Lithium-Ion Batteries. Energy Storage Materials, (37), 470. https://doi.org/10.1016/j.ensm.2021.02.034.
Fu, J., Li, Z., Zhou, X., & Guo, X. (2022). Ion Transport in Composite Polymer Electrolytes. Materials Advances, 9(3), 3811. https://doi.org/10.1039/D2MA00215A.
Gao, H., Grundish, N. S., Zhao, Y., Zhou, A., & Goodenough, J. B. (2021). Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries. Energy Material Advances, (2021), 1. https://doi.org/10.34133/2021/1932952.
Gohel, K., Kanchan, D. K., Machhi, H. K., Soni, S. S., & Maheshwaran, C. (2020). Gel Polymer Electrolyte Based On PVDF-HFP:Pmma Incorporated with Propylene Carbonate (PC) and Diethyl Carbonate (DEC) Plasticizers: Electrical, Morphology, Structural and Electrochemical Properties. Materials Research Express, 7(2). https://doi.org/10.1088/2053-1591/ab6c06.
Han, L., Wang, J., Mu, X., Wu, T., Liao, C., Wu, N., … Hu, Y. (2020). Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes. Journal of Colloid and Interface Science, (585), 3. https://doi.org/10.1016/j.jcis.2020.10.039.
Johari, S. N. A. M., Tajuddin, N. A., Hanibah, H., & Deraman, S. K. (2021). A Review: Ionic Conductivity of Solid Polymer Electrolyte Based Polyethylene Oxide. International Journal of Electrochemical Science, 16(3). https://doi.org/10.20964/2021.10.53.
Karabelli, D., Birke, K. P., & Weeber, M. (2021). A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. Batteries, 1(7), 1. https://doi.org/10.3390/batteries7010018.
Karpagavel, K., Sundaramahalingam, K., Manikandan, A., Vanitha, D., Manohar, A., Nagarajan, E. R., & Nallamuthu, N. (2021). Electrical Properties of Lithium‑Ion Conducting Poly (Vinylidene Fluoride‑Co‑ Hexafuoropropylene) (PVDF‑HFP)/ Polyvinylpyrrolidone (PVP) Solid Polymer Electrolyte. Journal of Electronic Materials, (50), 1. https://doi.org/10.1007/s11664-021-08967-9.
Kim, J. I., Choi, Y. G., Ahn, Y., Kim, D., & Park, J. H. (2021). Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries. Journal of Membrane Science, (619), 1. https://doi.org/10.1016/j.memsci.2020.118771.
Lestariningsih, T., Sabrina, Q., Ratri, C. R., & Nuroniah, I. (2019). Structure, thermal and electrical properties of PVDF-HFP/LiBOB solid polymer electrolyte. Journal of Physics Conference Series, (1191), 3. https://doi.org/10.1088/1742-6596/1191/1/012026/meta.
Li, J., Zhu, K., Wang, J., Yan, K., Liu, J., Yao, Z., & Xu, Y. (2019). Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries. Materials Technology, 4(37), 1. https://doi.org/10.1080/10667857.2020.1827873.
Li, J., Zhu, L., Xu, J., Jing, M., Yao, S., Shen, X., … Tu, F. (2020). Boosting the Performance of Poly (Ethylene Oxide)-Based Solid Polymer Electrolytes by Blending with Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) for Solid-State Lithium-Ion Batteries. International Journal of Energy Research, 44(9), 2. https://doi.org/10.1002/er.5476.
Mahendrakar, S., Anna, M., Kumar, J. S., & Reddy, J. (2020). Structural, Morphological and Electrical Studies of Plasticized Polymer-Salt Electrolyte membrane and Application to Lithium ion Batteries. Chemistry, International Journal of Applied, 3(13), 479-480. Retrieved from https://www.ripublication.com/ijac17/ijacv13n3_08.pdf.
Martínez, I. A. P., & González, V. R. (2016). Towards the Hydrothermal Growth of Hierarchical Cauliflower-Like TiO_2 Anatase Structures. J Sol-Gel Sci Technol, 1(81), 3. https://doi.org/10.1007/s10971-016-4241-7.
Mouraliraman, D., Shaji, N., Praven, S., Nanthagopal, M., Ho, C. W., Karthik, M. V., … Lee, C. W. (2022). Thermally Stable PVDF-HFP-Based Gel Polymer Electrolytes for High-Performance Lithium-Ion Batteries. Nanomaterials, 12(7), 2. https://doi.org/10.3390/nano12071056.
Onge, V. S., Cui, M., Rochon, S., Daigle, J. C., & Claverie, J. P. (2021). Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization. Communications Materials, 2(83), 3. Retrieved from https://www.nature.com/articles/s43246-021-00187-2.
Polu, A. R., & Rhee, H. W. (2016). The Effects of LiTDI Salt and POSS-PEG (n = 4) Hybrid Nanoparticles on Crystallinity and Ionic Conductivity of PEO Based Solid Polymer Electrolytes. Science of Advanced Materials, 1(8), 933. https://doi.org/10.1166/sam.2016.2657.
Ruan, Z., Du, Y., Pan, H., Zhang, R., Zhang, F., Tang, H., & Zhang, H. (2022). Incorporation of Poly (Ionic Liquid) with PVDF-HFP-Based Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers, 10(14), 2. https://doi.org/10.3390/polym14101950.
Sangeetha, M., Mallikarjun, A., Aparna, Y., Vikranth, R. M., Siva, K. J., Sreekhanth, T., & Jaipal, R. M. (2021). Dielectric Studies and AC Conductivity of PVDF-HFP: LIBF_4: EC Plasticized Polymer Electrolytes. Materials Today: Proceedings, 1(4), 2168. https://doi.org/10.1016/j.matpr.2020.12.280.
Sasikumar, M., Krishna, R. H., Raja, M., Therese, H. A., Balakrishnan, N. T. M., Raghavan, P., & Sivakumar, P. (2021). Titanium Dioxide Nano-Ceramic Filler in Solid Polymer Electrolytes: Strategy Towards Suppressed Dendrite Formation and Enhanced Electrochemical Performance For Safe Lithium Ion Batteries. Journal of Alloys and Compounds, (882), 2. https://doi.org/10.1016/j.jallcom.2021.160709.
Sun, C. C., Yusuf, A., Li, S. W., Qi, X. L., Ma, Y., & Wang, D. Y. (2021). Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chemical Engineering Journal, 4(4), 1. https://doi.org/10.1016/j.cej.2021.128702.
Wen, J., Zhao, Q., Jiang, X., Ji, G., Wang, R., Lu, G., … Xu, C. (2021). Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. Applied Energy Materials, 4(4), 3661. https://doi.org/10.1021/acsaem.1c00090.
Wilson, J., & Ravi, G. (2006). Electrochemical Studies on Inert Filler Incorporated Poly (Vinylidene Fluoride – Hexafluoropropylene) (PVDF – HFP) Composite Electrolytes. Polímeros: Ciência e Tecnologia, 2(16), 89. https://doi.org/10.1590/S0104-14282006000200006.
Winie, T., Hanif, N. S. M., Chan, C. H., Arof, A. K., & Purawiardi, I. (2014). Effect of the Surface Treatment of the TiO_2 Fillers on the Properties of Hexanoyl Chitosan/Polystyrene Blend-Based Composite. Polymer Electrolytes. Ionics, 1(20), 352. https://doi.org/10.1007%2Fs11581-013-0983-1.
Xu, P., Chen, H., Zhou, X., & Xiang, H. (2021). Gel Polymer Electrolyte Based on PVDF-HFP Matrix Composited With RGO-PEG-NH_2 For High-Performance Lithium Ion Battery. Journal of Membrane Science, (617), 1. https://doi.org/10.1016/j.memsci.2020.118660.
Yadav, P., Beheshti, S. H., Kathribail, A. R., P., I., Mierlo, J. V., & M., B. (2022). Improved Performance of Solid Polymer Electrolyte for Lithium-Metal Batteries via Hot Press Rolling. Polymers, 3(14), 2. https://doi.org/10.3390/polym14030363.
Zhang, Y., Wang, X., Liang, S., Shi, Y., Chen, X., Liu, J., & Wang, A. (2021). Fermentation optimization, fungistatic effects and tomato growth promotion of four biocontrol bacterial strains. Agriculture (Switzerland), 11(7), 1–18. https://doi.org/10.3390/agriculture11070686.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reyhan Fikri Mushaddaq
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)