Kinerja Lemari Es dengan Penukar Panas Pipa Ganda Refrigeran Alami (R1270)

Authors

  • Kamin Sumardi Universitas Pendidikan Indonesia
  • Asri Ratnasari Universitas Pendidikan Indonesia, Bandung, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i1.48287

Keywords:

Heat Exchanger, Pipa Kapiler, R1270

Abstract

Teknologi refrigerator terus berkembang menuju arah yang lebih baik dan efisien. Refrigerator harus diberikan sentuhan inovasi untuk mendapatkan kinerja yang paling baik. Penelitian ini bertujuan untuk mendapatkan data kinerja refrigerator dengan inovasi double pipe heat exchanger dan variasi panjang pipa kapiler. Metode penelitian yang digunakan yaitu eksperimen. Eksperimen dilakukann pada trainer refrigerator 1/6 PK, perbandingan ukuran double pipe heat exchanger 1/4:1/2, dan variasi panjang pipa kapiler yaitu 1,5m, 2m, 2,5m, dan 2,75m. Diameter pipa kapiler dipertahankan dengan ukuran 0,028 inchi. Refrigeran awal yang digunakan yaitu refrigeran R-134a sebagai kemudian di retrofit dengan metode drop in substitute oleh refrigeran R-1270 sebagai refrigeran yang diuji. Beban yang digunakan adalah air mineral 1,5L. Hasil penelitian diperoleh bahwa penggunaan pipa kapiler 1,5m dan double pipe heat exchanger mampu meningkatkan nilai efek refrigerasi hingga 49%, nilai efisiensi kerja (CoP) meningkat 22% dibandingkan dengan sistem refrigerator yang menggunakan R-134a. Konsumsi daya listrik mengalami penurunan hingga 25%, sehingga mengurangi biaya tagihan listrik. Penelitian ini telah menunjukkan bahwa penggunaan refrigeran R-1270 pada refrigerator dengan double pipe heat exchanger dan panjang pipa kapiler dengan diameter 0,028 inchi meningkatkan kinerja dan lebih hemat konsumsi energi listrik.

References

Ajuka, L. O., Odunfa, M. K., Ohunakin, O. S., & Oyewola, M. O. (2017). Energy and exergy analysis of vapour compression refrigeration system using selected eco-friendly hydrocarbon refrigerants enhanced with tio2-nanoparticle. International Journal of Engineering & Technology, 6(4), 91–97. https://doi.org/10.1441/ijet.v6i4.7099.

Aktemur, C., & Öztürk, İ. T. (2022). Thermodynamic performance enhancement of booster assisted ejector expansion refrigeration systems with R1270/CuO nano-refrigerant. Energy Conversion and Management, 253, 115191. https://doi.org/10.1016/ j.enconman.2021.115191.

Aziz, A., Siregar, I. A. R., Mainil, R. I., & Mainil, A. K. (2020). Komparasi Kinerja Refrigerator dengan Refrigeran Hidrokarbon HCR134a Alternatif Pengganti R134a pada Panjang Pipa Kapiler 1,25m. Jurnal Sains Dan Teknologi, 19(2), 76–81. Retrieved from https://jst.ejournal.unri.ac.id/index.php/JST/article/download/7628/6627.

Cabello, R., Sánchez, D., Llopis, R., Andreu-Nacher, A., & Calleja-Anta, D. (2022). Energy impact of the Internal Heat Exchanger in a horizontal freezing cabinet. Experimental evaluation with the R404A low-GWP alternatives R454C, R455A, R468A, R290 and R1270. International Journal of Refrigeration, 137, 22–33. https://doi.org/10.1016/j.ijrefrig.2022.02.007.

Dinçer, I., & Kanoǧlu, M. (2010). Refrigeration Systems and Applications 2nd ed. West Sussex: John Wiley & Sons, Ltd.

El Sayed, A. R., El Morsi, M., & Mahmoud, N. A. (2017). Thermodynamic analysis of a simple refrigeration cycle using hydrocarbon refrigerants as substitute to R22. Int. J. Adv. Eng. Manage. Res, 2(2), 245-273.

Emani, M. S., & Mandal, B. K. (2018). The use of natural refrigerants in refrigeration and air conditioning systems: a review. In IOP Conference Series: Materials Science and Engineering, 377(1), p.012064. Retrieved from https://iopscience.iop.org/article/10.1088/1757-899X/377/1/012064.

Fang, X., Lin, J., & Ma, X. (2021). Simulation study on compression characteristics of low GWP refrigerants in the cylinder of rotary compressors. ,. Applied Thermal Engineering, 193, 117056. Retrieved from https://doi.org/10.1016/j.applthermaleng.2021.117056.

Ghani, S., Gamaledin, S. M. A., Rashwan, M. M., & Atieh, M. A. (2018). Experimental investigation of double-pipe heat exchangers in air conditioning applications. Energy and Buildings, 158, 801-811. https://doi.org/10.1016/j.enbuild.2017.10.051.

Hidayati, B., & Ardiansyah, A. (2018). Analisa Pengaruh Panjang Pipa Kapiler terhadap Performansi Hard Ice Cream Maker dengan menggunakan R-22 dan MC-22. PETRA: Jurnal Teknologi Pendingin Dan Tata Udara, 5(1), 1–6. Retrieved from http://jurnal.polsky.ac.id/index.php/petra/article/download/147/143/%0A.

Homzah, O. F., Hendradinata, H., & Akui, B. (2017). Pengaruh Variasi Panjang dan Diameter Pipa Kapiler terhadap CoP Pada Trainer Sistem Pendingin Dasar. PETRA: Jurnal Teknologi Pendingin Dan Tata Udara, 3(1), 15–22. Retrieved from https://jurnal.polsky.ac.id/index.php/petra/article/view/141/137.

Ku, H. K. (2014). Performance Analysis of R-1270 (Propylene) Refrigeration System Using Internal Heat Exchanger. Journal of Power System Engineering, 18(4), 36–42. https://doi.org/10.9726/kspse.2014.18.4.036.

Lacerda, A., De Carvalho, U., Henrique, F., Corrêa De Oliveira, P., De Lima, R., Mariano, R., … Souto-Maior, A. M. (2010). BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Growth, Sporulation and Production of Bioactive Compounds by Bacillus subtilis R14. Arch. Biol. Technol. V, 53353(3), 643–652.

Liu, J., & Lin, Z. (2020). Thermodynamic analysis of a novel dual-temperature air-source heat pump combined ejector with zeotropic mixture R1270/R600a.,. Energy Conversion and Management, 220, 113078. https://doi.org/10.1016/j.enconman.2020.113078

Longo, G. A., Righetti, G., & Zilio, C. (2019). Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants. International Journal of Heat and Mass Transfer, 139, 31-38. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.144.

Madyira, D. M., Marangwanda, G. T., Ekundayo, F. M., Babarinde, T. O., & Akinlabi, S. A. (2019). Investigation of Household Refrigerator System with Varied Capillary Tube Length. Journal of Physics: Conference Series, 1378.(4), 042056. https://doi.org/10.1088/1742-6596/1378/4/042056.

Mafi, M., Shomali, M., & Ajorloo, H. (2017). A feasibility study on substitution of environmentally friendly refrigerants in common refrigeration systems. Modares Mechanical Engineering, 16(12), 779–782. Retrieved from http://mme.modares.ac.ir/article-15-310-en.html.

Mastur, M., Supriyana, N., & Sutarno, S. (2020). Studi Eksperimen Pengaruh Beban dan Diameter Pipa Kapiler terhadap Coefficien of Performance (CoP) pada Mesin Pendingin. Iteks, 12(1), 51-59. Retrieved from https://www.ejournal.stt-wiworotomo.ac.id/index.php/iteks/article/view/289/352.

Mutaufiq, Sulistyo, H., Sumardi, K., Berman, E. T., & Wiyono, A. (2021). Performance Investigation of Cooling Machine Practice Props After Retrofitted by Natural Refrigerants. Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 20(2), 136-145. https://doi.org/10.26874/jt.vol20no2.419.

Oyedepo, S. O. (2016). Effect of capillary tube length and refrigerant charge on the performance of domestic refrigerator with R12 and R600a.,. International Journal of Advanced Thermofluid Research, 2(1), 2–14.

Panato, V. H., Porto, M. P., & Bandarra, F, E. P. (2017). Experimental performance of an R-22-based refrigeration system for use with R-1270, R-438A, R-404A and R-134a. International Journal of Refrigeration, 83, 108–117. https://doi.org/10.1016/j.ijrefrig.2017.07.010.

Parashurama, S., Saleel, C. A., Govindegowda, M. S., & Khan, S. A. (2019). Hydrocarbons as Alternative Refrigerants in Domestic Refrigerators. International Journal of Innovative Technology and Exploring Engineering, 8, 496–501.

Pratama, E. Y., & Sukarmin. (2021). Pengembangan Media Interaktif Hace (Hydrocarbon) Dalam Mereduksi Miskonsepsi Peserta Didik Dengan Strategi Conceptual Change Text Pada Materi Hidrokarbon. Jurnal Teknologi Pendidikan (JTP), 14(1), 41. https://doi.org/10.24114/jtp.v14i1.22641.

Saengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., & Theppaya, T. (2020). Development of Environmentally-Friendly and Energy Efficient Refrigerant for Medium Temperature Refrigeration Systems. Journal of Advanced Research in Materials Science, 71(1), 12–31. https://doi.org/10.37934/arms.71.1.1231.

Sánchez, D., Cabello, R., Llopis, R., Catalán-Gil, J., & Nebot-Andrés, L. (2019). Energy assessment and environmental impact analysis of an R134a/R744 cascade refrigeration plant upgraded with the low-GWP refrigerants R152a, R1234ze (E), propane (R290) and propylene (R1270). International Journal of Refrigeration, 104, 321–334. https://doi.org/10.1016/j.ijrefrig.2019.05.028.

Shaik, S. V., Shaik, S., & Gorantla, K. (2020). Investigation on thermodynamic performance analysis and environmental effects of various new refrigerants used in air conditioners. Environ. Sci. Pollut. Res., 27, 41415–41436. https://doi.org/10.1007/s11356-020-09478-6.

Shaik, S. V., & Babu, T. A. (2017). Theoretical performance investigation of vapour compression refrigeration system using HFC and HC refrigerant mixtures as alternatives to replace R22. Energy Procedia, 109, 235–242. https://doi.org/10.1016/j.egypro.2017.03.053.

Siddegowda, P., Sannappagowda, G. M., & Kempegowda, R. D. (2018). Development of alternative binary mixtures to replace HFC 134a in domestic refrigerator. Chemical Engineering Transactions, 71, 1399–1404. https://doi.org/10.3303/CET1871234

Singh, K. K., Kumar, R., & Gupta. (2021). A. Multi-objective Optimization of Thermodynamic and Economic Performances of Natural Refrigerants for Cascade Refrigeration. Arab. J. Sci. Eng, 46, 12235–12252. https://doi.org/10.1007/s13369-021-05924-w.

Sumardi, K., Berman, E. T., & Mutaufiq, M. (2021). The Performance of Vapor Compression Refrigeration System Using R-1270. Flywheel, 7(1), 21–27. https://doi.org/10.36055/fwl.v0i0.9998.

Sumardi, K., Naufal, D., Maulana, M. F., & Berman, E. T. (2021). Feasibility of R1270 as an Alternative Refrigerant to Replace R134a in Refrigerator. In 6th UPI International Conference on TVET 2020, 55–58. https://doi.org/10.2991/assehr.k.210203.086.

Vali, S. S., Setty, T. P., & Babu, A. (2018). Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270. In MATEC Web of Conferences, 144, 04009. https://doi.org/10.1051/matecconf/201814404009.

Verma, R., & Chaudhary, S. (2017). Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant. International Research Journal of Engineering and Technology, 4(6), 897–9011.

Wantha, C. (2019). Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems. Applied Thermal Engineering, 157, 113747. https://doi.org/10.1016/j.applthermaleng.2019.113747.

Wu, Z. J. (2015). The Experiment on System Performance Comparing Analysis and Displacement between R1270 and R22. In Applied Mechanics and Materials, 799, 770–773. Retrieved from https://doi.org/10.4028/www.scientific.net/AMM.799-800.770.

Yilmaz, B., Mancuhan, E., & Yilmaz, D. (2020). Theoretical Analysis of A Cascade Refrigeration System with Natural and Synthetic Working Fluid Pairs for Ultra Low Temperature Applications. Journal of Thermal Sciences and Technology, 40(1), 141-153.

Zhang, Y., He, Y., Wang, Y., Wu, X., Jia, M., & Gong, Y. (2020). Experimental investigation of the performance of an R1270/CO2 cascade refrigerant system. International Journal of Refrigeration, 114, 175–180. https://doi.org/10.1016/j.ijrefrig.2020.02.017.

Downloads

Published

2023-03-20

How to Cite

Sumardi, K., & Ratnasari, A. . (2023). Kinerja Lemari Es dengan Penukar Panas Pipa Ganda Refrigeran Alami (R1270). JST (Jurnal Sains Dan Teknologi), 12(1), 156–165. https://doi.org/10.23887/jstundiksha.v12i1.48287

Issue

Section

Articles