Deteksi Pelanggaran Lampu Lalu Lintas Berdasarkan Sensor Visual
DOI:
https://doi.org/10.23887/jstundiksha.v11i2.50287Keywords:
Deteksi Objek, Pelanggaran Lalu Lintas, Sensor Visual, Pengolahan CitraAbstract
Peningkatan jumlah pengendara yang pesat berefek pada masalah pelanggaran lalu lintas yang menimbulkan banyak korban. Untuk mengurangi masalah pelanggaran lalu lintas tersebut, dibutuhkan sistem pendeteksi pelanggaran yang dapat mempermudah petugas dalam memantau terjadinya pelanggaran di persimpangan lampu lalu lintas. Penelitian ini bertujuan mengembangkan dan mengevaluasi sistem deteksi pelanggaran pada simpang lampu lalu lintas menggunakan sensor visual. Sistem dirancang dengan melalui tiga tahapan yaitu deteksi lampu hijau, deteksi kendaraan dan deteksi jumlah pelanggaran. Pada tahap pertama yaitu deteksi lampu hijau digunakan filter warna HSL yang akan mendeteksi lampu hijau lalu lintas. Untuk mendeteksi kendaraan digunakan metode background substraction, morphology filer dan blob detection. Tahapan terakhir adalah mendeteksi jumlah pelanggaran yang ditentukan dengan penentuan garis virtual yang ditempatkan di atas zebra cross. Pada tahap ini, pelanggaran ditentukan oleh pengendara yang melewati atau berada di atas garis virtual. Sistem diimplementasikan menggunakan video hasil rekaman di beberapa simpang lalu lintas. Hasil evaluasi pengujian menunjukkan bahwa sistem deteksi pelanggaran yang telah dikembangkan telah berhasil mendeteksi pelanggaran lalu lintas dengan tingkat kesalahan rata-rata sebesar 1,1%. Sistem telah berhasil mendeteksi lampu lalu lintas menggunakan filter warna HSL.
References
Andrew, A., Buliali, J. L., & Wijaya, A. Y. (2017). Deteksi Kecepatan Kendaraan Berjalan di Jalan Menggunakan OpenCV. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.23489.
Badan pusat, & Statistik. (2021). Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi 2017-2019. Bps Publication.
Bhat, A. T., Anupama, Akshatha, Rao, M. S., & Pai, D. G. (2021). Traffic violation detection in India using genetic algorithm. Global Transitions Proceedings, 2(2), 309–314. https://doi.org/10.1016/j.gltp.2021.08.056.
Boato, G., Dang-Nguyen, D. T., & De Natale, F. G. B. (2020). Morphological Filter Detector for Image Forensics Applications. IEEE Access, 8, 13549–13560. https://doi.org/10.1109/ACCESS.2020.2965745.
Ehkan, P., Siew, S. V., Zakaria, F. F., Mohd Warip, M. N., & Ilyas, M. Z. (2020). Comparative Study of Parallelism and Pipelining of RGB to HSL Colour Space Conversion Architecture on FPGA. IOP Conference Series: Materials Science and Engineering, 767(1). https://doi.org/10.1088/1757-899X/767/1/012054.
Fernando, F., & Dinardinata, A. (2019). Pengaruh Pendekatan Pesan Injungtif Normatif Terhadap Kepatuhan Para Pengendara Sepeda Motor Saat Lampu Merah Menyala Di Kawasan Kelurahan Tembalang Dan Banyumanik. EMPATI, 7(4), 1418 – 1426. https://doi.org/10.14710/empati.2018.23459.
Franklin, R. J., & Mohana. (2020). Traffic Signal Violation Detection using Artificial Intelligence and Deep Learning. 839–844. https://doi.org/10.1109/icces48766.2020.9137873.
Gunadi, K., Setyati, E., & Surabaya, J. S. (2020). Deteksi Helm pada Pengguna Sepeda Motor dengan Metode Convolutional Neural Network. Jurnal Infra, 8(1), 295–301.
Ibadov, S., Ibadov, R., Kalmukov, B., & Krutov, V. (2017). Algorithm for detecting violations of traffic rules based on computer vision approaches. MATEC Web of Conferences, 132. https://doi.org/10.1051/matecconf/201713205005.
Iswanjono, Budiardjo, B., & Ramli, K. (2010). Simulation for RFID-based red light violation detection: Violation detection and flow prediction. 2nd International Conference on Computer Research and Development, ICCRD 2010, Id, 742–746. https://doi.org/10.1109/ICCRD.2010.168.
Jia, W., Xu, S., Liang, Z., Zhao, Y., Min, H., Li, S., & Yu, Y. (2021). Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector. IET Image Processing, 15(14), 3623–3637. https://doi.org/10.1049/ipr2.12295.
Li, H., Zhang, A., Zhang, M., Huang, B., Zhao, X., Gao, J., & Si, J. (2021). Concurrent and longitudinal associations between parental educational involvement, teacher support, and math anxiety: The role of math learning involvement in elementary school children. Contemporary Educational Psychology, 66(1), 101984. https://doi.org/10.1016/j.cedpsych.2021.101984.
Miranto, A., Sulistiyanti, S. R., & Arinto Setyawan, F. X. (2019). Adaptive background subtraction for monitoring system. 2019 International Conference on Information and Communications Technology, ICOIACT 2019, 153–156. https://doi.org/10.1109/ICOIACT46704.2019.8938501.
Prasantha. (2020). Traffic Red Light Violation Detection using Image Processing. International Journal of Advances in Engineering and Management.
Pushpendra, Kumar, V. D. K. S. (2020). Design of Zebra Cross Violation Detection Model in Traffic Light Using the Adaptive Background Subtraction Method. International Journal of Advanced Science and Technology, 29(5), 2151–2159.
Qian, S., & Weng, G. R. (2015). Research on Object Detection based on Mathematical Morphology. https://doi.org/10.2991/icitmi-15.2015.36.
Rahmawati, Y., Simanjuntak, I. U., & Simorangkir, R. B. (2022). Rancang Bangun Purwarupa Sistem Peringatan Pengendara Pelanggar Zebra Cross Berbasis Mikrokontroller ESP-32 CAM. Jambura Journal of Electrical and Electronics Engineering, 4(2), 189–195. https://doi.org/10.37905/jjeee.v4i2.14499.
Rizki, R., & Suwarno, S. (2021). A New Design Protoype of Safety System on Traffic Light using Hydraulic Limiters Zebra Cross Automatic=. Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences, 4(3), 6741–6749. https://doi.org/10.33258/birci.v4i3.2493.
Satlantas. (2022). Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (UNIT). Badan Pusat Statistik.
Savaş, M. F., Demirel, H., & Erkal, B. (2018). Moving object detection using an adaptive background subtraction method based on block-based structure in dynamic scene. Optik, 168, 605–618. https://doi.org/10.1016/j.ijleo.2018.04.047.
Setiawan, P. R., & Sulistiyanti, S. R. (2020). Deteksi Pelanggaran Zebra Cross Pada Traffic Light Menggunakan Metode Adaptif Background Subtraction. Electrician, 12(3), 104. https://doi.org/10.23960/elc.v12n3.2083.
Sugandi, B. (2018). Deteksi dan Pelacakan Wajah Berdasarkan Warna Kulit Menggunakan Partikel Filter. Jurnal Rekayasa Elektrika, 14(2). https://doi.org/10.17529/jre.v14i2.10974.
Tonge, A., Chandak, S., Khiste, R., Khan, U., & Bewoor, L. A. (2020). Traffic Rules Violation Detection using Deep Learning. Proceedings of the 4th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2020, 1250–1257. https://doi.org/10.1109/ICECA49313.2020.9297495.
Triwibowo, D. N., Utami, E., & Sukoco, S. (2020). Analisis BLOB Detection Pada Pendeteksian dan Perhitungan Kendaraan di Jalan Tol. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 10(1), 1. https://doi.org/10.35585/inspir.v10i1.2532.
Tsai, S. H., & Tseng, Y. H. (2012). A novel color detection method based on HSL color space for robotic soccer competition. Computers and Mathematics with Applications, 64(5), 1291–1300. https://doi.org/10.1016/j.camwa.2012.03.073.
Tseng, B. L., Lin, C. Y., & Smith, J. R. (2002). Real-time video surveillance for traffic monitoring using virtual line analysis. Proceedings - 2002 IEEE International Conference on Multimedia and Expo, ICME 2002, 2, 541–544. https://doi.org/10.1109/ICME.2002.1035671.
Uy, A. C. P., Quiros, A. R. F., Bedruz, R. A., Abad, A., Bandala, A., Sybingco, E., & Dadios, E. P. (2017). Automated traffic violation apprehension system using genetic algorithm and artificial neural network. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2094–2099. https://doi.org/10.1109/TENCON.2016.7848395.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Budi Sugandi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)