The GARCH-X(1,1) Model with Exponentially Transformed Exogenous Variables

Authors

  • Didit Nugroho Universitas Kristen Satya Wacana
  • Obed Dimitrio Universitas Kristen Satya Wacana
  • Faldy Tita Universitas Kristen Satya Wacana

DOI:

https://doi.org/10.23887/jstundiksha.v12i1.50714

Keywords:

ARWM, Exponential transformation, GARCH-X, Student-t, Volatility

Abstract

Model Generalized Autoregressive Conditional Heteroskedasticity (GARCH) dengan mempertimbangkan efek dari variabel eksogen pada proses volatilitas, dinamakan GARCH-X(1,1), telah sukses memperbaiki pencocokan dan prediksi volatilitas dari model GARCH. Variabel eksogen yang sering digunakan adalah ukuran Realized Volatility (RV). Untuk mereduksi kemencengan dari RV sehingga mampu memperbaiki pencocokan model, studi ini mengaplikasikan transformasi eksponensial pada variabel eksogen dalam model GARCH-X(1,1). Tujuan tersebut dicapai melalui studi empiris berdasarkan pada data returns dan RV 10 menit (sebagai variabel eksogen) dari indeks harga saham FTSE100 dan SP500 periode harian dari Januari 2000 sampai Desember 2021 yang diambil dari Oxford-man Institute’s “Realized Library”. Analisis didasarkan pada hasil estimasi model dengan error dari returns berdistribusi Normal dan Student-t menggunakan Metode Adaptive Random Walk Metropolis diimplementasikan dalam algoritma Markov Chain Monte Carlo. Interval High Posterior Density pada tingkat kepercayaan 99% mengindikasikan signifikansi dari transformasi eksponensial untuk variabel eksogen pada kedua kasus asumsi distribusi untuk error dari returns. Terlebih lagi, nilai Akaike Information Criterion (AIC) mengindikasikan bahwa model yang diusulkan menggungguli model dasar GARCH-X(1,1), dimana model pencocokan terbaik diberikan oleh model berdistribusi Student-t.

Author Biographies

Obed Dimitrio, Universitas Kristen Satya Wacana

Departement of Mathematics and Data Science

Faldy Tita, Universitas Kristen Satya Wacana

Departement of Mathematics and Data Science

References

Ariani, N. K., & Ujianti, P. R. (2021). Media Video Animasi untuk Meningkatkan Listening Skill Anak Usia Dini. Jurnal Pendidikan Anak Usia Dini Undiksha, 9(1), 43. https://doi.org/10.23887/paud.v9i1.35690.

Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), 1–11. https://doi.org/10.1002/wics.1460.

Ceylan, O. (2014). Time-varying volatility asymmetry: A conditioned HAR-RV(CJ) EGARCH-M model. Journal of Risk, 17(2), 21–49. https://doi.org/10.21314/JOR.2014.295.

Chaudhary, R., Bakhshi, P., & Gupta, H. (2020). Volatility in International Stock Markets: An Empirical Study during COVID-19. Journal of Risk and Financial Management, 13(9), 208. https://doi.org/10.3390/jrfm13090208.

Engle, R. (2002). New Frontiers for ARCH Models. Journal of Applied Econometrics, 17(5), 425–446. https://doi.org/10.1002/jae.683.

Engle, R. F., & Patton, A. J. (2001). What good is a volatility model? Quantitative Finance, 1(2), 237–245. https://doi.org/https://doi.org/10.1088/1469-7688/1/2/305.

Floros, C., Gkillas, K., Konstantatos, C., & Tsagkanos, A. (2020). Realized measures to explain volatility changes over time. Journal of Risk and Financial Management, 13(6), 125.

Gkillas, K., Gupta, R., & Pierdzioch, C. (2020). Forecasting realized gold volatility: Is there a role of geopolitical risks? Finance Research Letters, 35, 1–6. https://doi.org/10.1016/j.frl.2019.08.028.

Gulay, E., & Emec, H. (2019). The stock returns volatility based on the GARCH (1,1) model: The superiority of the truncated standard normal distribution in forecasting volatility. Iranian Economic Review, 23(1), 87–108. https://doi.org/10.22059/IER.2018.69100.

Han, H. (2015). Asymptotic properties of GARCH-X processes. Journal of Financial Econometrics, 13(1), 188–221. https://doi.org/10.1093/jjfinec/nbt023.

Hohler, J., & Lansink, A. O. (2021). Measuring the impact of COVID‐19 on stock prices and profits in the food supply chain. Agribusiness (New York, N.Y.), 37(1), 171–186. https://doi.org/10.1002/AGR.21678.

Kallner, A. (2018). Formulas. In A. Kallner (Ed.), Laboratory Statistics (Second, pp. 1–140). Elsevier. https://doi.org/10.1016/B978-0-12-814348-3.00001-0.

Li, R., & Nadarajah, S. (2020). A review of Student’s t distribution and its generalizations. Empirical Economics, 58(3), 1461–1490. https://doi.org/10.1007/s00181-018-1570-0.

McAlevey, L. G., & Stent, A. F. (2018). Kurtosis: a forgotten moment. International Journal of Mathematical Education in Science and Technology, 49(1), 120–130. https://doi.org/10.1080/0020739X.2017.1357848.

Mishra, A. K., Agrawal, S., & Patwa, J. A. (2022). Return and volatility spillover between India and leading Asian and global equity markets: An empirical analysis. Journal of Economics, Finance and Administrative Science, ahead-of-p(ahead-of-print). https://doi.org/10.1108/JEFAS-06-2021-0082.

Nugroho, D. B. (2018). Comparative Analysis of Three MCMC Methods for Estimating GARCH Models. In IOP Conference Series: Materials Science and Engineering (Vol. 403, p. 012061). IOP Publishing. https://doi.org/10.1088/1757-899X/403/1/012061.

Nugroho, D. B., Mahatma, T., & Pratomo, Y. (2021a). Applying the non-linear transformation families to the lagged-variance of EGARCH and GJR models. IAENG International Journal of Applied Mathematics, 51(4), 908–919.

Nugroho, D. B., Mahatma, T., & Pratomo, Y. (2021b). GARCH Models under Power Transformed Returns: Empirical Evidence from International Stock Indices. Austrian Journal of Statistics, 50(4), 1–18. https://doi.org/10.17713/ajs.v50i4.1075.

Nugroho, D. B., & Morimoto, T. (2014). Realized non-linear stochastic volatility models with asymmetric effects and generalized student’s t-distribution. Journal of The Japan Statistical Society, 44(1), 83–118. https://doi.org/10.14490/jjss.44.83.

Nugroho, D. B., & Morimoto, T. (2015). Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods. Computational Statistics, 30(2), 491–516. https://doi.org/10.1007/s00180-014-0546-6.

Nugroho, D. B., & Morimoto, T. (2016). Box–Cox Realized Asymmetric Stochastic Volatility Models with Generalized Student’s t-Error Distributions. Journal of Applied Statistics, 43(10), 1906–1927. https://doi.org/10.1080/02664763.2015.1125862.

Nugroho, D. B., Susanto, B., & Rosely, M. M. M. (2018). Penggunaan MS Excel untuk Estimasi Model GARCH(1,1). Jurnal Matematika Integratif, 14(2), 71–83. https://doi.org/10.24198/jmi.v14.n2.17680.71-82.

Perry, M. B. (2018). Prediction Intervals for the Original Response when Using Manly’s Exponential Transformations. Quality Engineering, 30(2), 195–211. https://doi.org/10.1080/08982112.2017.1357827.

Rahman, I., Gani, R. A., & Achmad, I. Z. (2020). Persepsi Siswa Pada Pembelajaran Pendidikan Jasmani Olahraga Dan Kesehatan Tingkat Sma. Jurnal Pendidikan Olahraga, 9(2), 144–154. https://doi.org/10.31571/jpo.v9i2.1898.

Sumair, M., Aized, T., Asad, S., Gardezi, R., Mahmood, M., Bhutta, A., … Rehman, S. (2021). Application of five continuous distributions and evaluation of wind potential at five stations using normal distribution. Energy Exploration & Exploitation, 39(6), 2214–2239. https://doi.org/10.1177/0144598720939373.

Sutrisno, B. (2020). The Determinants of Stock Price Volatility in Indonesia. Economics and Accounting Journal, 3(1), 73–79. https://doi.org/10.32493/eaj.v3i1.y2020.p73-79.

Virginia, E., Ginting, J., & Elfaki, F. A. M. (2018). Application of GARCH model to forecast data and volatility of share price of energy (Study on Adaro Energy Tbk, LQ45). International Journal of Energy Economics and Policy, 8(3), 131–140.

Wijaya, M. T. (2021). Pemodelan GARCH berdasarkan ukuran realized kernel dan pengestimasian model menggunakan Solver GRG Non-Linear dan metode ARWM. Universitas Kristen Satya Wacana.

Yeasin, M., Singh, K. N., Lama, A., & Paul, R. K. (2020). Modelling volatility influenced by exogenous factors using an improved GARCH-X model. Journal of the Indian Society of Agricultural Statistics, 74(3), 209–216.

Zhang, H., & Lan, Q. (2014). GARCH-type model with continuous and jump variation for stock volatility and its empirical study in China. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/386721.

Downloads

Published

2023-03-20

How to Cite

Nugroho, D., Dimitrio, O., & Tita, F. (2023). The GARCH-X(1,1) Model with Exponentially Transformed Exogenous Variables. JST (Jurnal Sains Dan Teknologi), 12(1), 65–72. https://doi.org/10.23887/jstundiksha.v12i1.50714

Issue

Section

Articles