The GARCH-X(1,1) Model with Exponentially Transformed Exogenous Variables
DOI:
https://doi.org/10.23887/jstundiksha.v12i1.50714Keywords:
ARWM, Exponential transformation, GARCH-X, Student-t, VolatilityAbstract
Model Generalized Autoregressive Conditional Heteroskedasticity (GARCH) dengan mempertimbangkan efek dari variabel eksogen pada proses volatilitas, dinamakan GARCH-X(1,1), telah sukses memperbaiki pencocokan dan prediksi volatilitas dari model GARCH. Variabel eksogen yang sering digunakan adalah ukuran Realized Volatility (RV). Untuk mereduksi kemencengan dari RV sehingga mampu memperbaiki pencocokan model, studi ini mengaplikasikan transformasi eksponensial pada variabel eksogen dalam model GARCH-X(1,1). Tujuan tersebut dicapai melalui studi empiris berdasarkan pada data returns dan RV 10 menit (sebagai variabel eksogen) dari indeks harga saham FTSE100 dan SP500 periode harian dari Januari 2000 sampai Desember 2021 yang diambil dari Oxford-man Institute’s “Realized Library”. Analisis didasarkan pada hasil estimasi model dengan error dari returns berdistribusi Normal dan Student-t menggunakan Metode Adaptive Random Walk Metropolis diimplementasikan dalam algoritma Markov Chain Monte Carlo. Interval High Posterior Density pada tingkat kepercayaan 99% mengindikasikan signifikansi dari transformasi eksponensial untuk variabel eksogen pada kedua kasus asumsi distribusi untuk error dari returns. Terlebih lagi, nilai Akaike Information Criterion (AIC) mengindikasikan bahwa model yang diusulkan menggungguli model dasar GARCH-X(1,1), dimana model pencocokan terbaik diberikan oleh model berdistribusi Student-t.
References
Ariani, N. K., & Ujianti, P. R. (2021). Media Video Animasi untuk Meningkatkan Listening Skill Anak Usia Dini. Jurnal Pendidikan Anak Usia Dini Undiksha, 9(1), 43. https://doi.org/10.23887/paud.v9i1.35690.
Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), 1–11. https://doi.org/10.1002/wics.1460.
Ceylan, O. (2014). Time-varying volatility asymmetry: A conditioned HAR-RV(CJ) EGARCH-M model. Journal of Risk, 17(2), 21–49. https://doi.org/10.21314/JOR.2014.295.
Chaudhary, R., Bakhshi, P., & Gupta, H. (2020). Volatility in International Stock Markets: An Empirical Study during COVID-19. Journal of Risk and Financial Management, 13(9), 208. https://doi.org/10.3390/jrfm13090208.
Engle, R. (2002). New Frontiers for ARCH Models. Journal of Applied Econometrics, 17(5), 425–446. https://doi.org/10.1002/jae.683.
Engle, R. F., & Patton, A. J. (2001). What good is a volatility model? Quantitative Finance, 1(2), 237–245. https://doi.org/https://doi.org/10.1088/1469-7688/1/2/305.
Floros, C., Gkillas, K., Konstantatos, C., & Tsagkanos, A. (2020). Realized measures to explain volatility changes over time. Journal of Risk and Financial Management, 13(6), 125.
Gkillas, K., Gupta, R., & Pierdzioch, C. (2020). Forecasting realized gold volatility: Is there a role of geopolitical risks? Finance Research Letters, 35, 1–6. https://doi.org/10.1016/j.frl.2019.08.028.
Gulay, E., & Emec, H. (2019). The stock returns volatility based on the GARCH (1,1) model: The superiority of the truncated standard normal distribution in forecasting volatility. Iranian Economic Review, 23(1), 87–108. https://doi.org/10.22059/IER.2018.69100.
Han, H. (2015). Asymptotic properties of GARCH-X processes. Journal of Financial Econometrics, 13(1), 188–221. https://doi.org/10.1093/jjfinec/nbt023.
Hohler, J., & Lansink, A. O. (2021). Measuring the impact of COVID‐19 on stock prices and profits in the food supply chain. Agribusiness (New York, N.Y.), 37(1), 171–186. https://doi.org/10.1002/AGR.21678.
Kallner, A. (2018). Formulas. In A. Kallner (Ed.), Laboratory Statistics (Second, pp. 1–140). Elsevier. https://doi.org/10.1016/B978-0-12-814348-3.00001-0.
Li, R., & Nadarajah, S. (2020). A review of Student’s t distribution and its generalizations. Empirical Economics, 58(3), 1461–1490. https://doi.org/10.1007/s00181-018-1570-0.
McAlevey, L. G., & Stent, A. F. (2018). Kurtosis: a forgotten moment. International Journal of Mathematical Education in Science and Technology, 49(1), 120–130. https://doi.org/10.1080/0020739X.2017.1357848.
Mishra, A. K., Agrawal, S., & Patwa, J. A. (2022). Return and volatility spillover between India and leading Asian and global equity markets: An empirical analysis. Journal of Economics, Finance and Administrative Science, ahead-of-p(ahead-of-print). https://doi.org/10.1108/JEFAS-06-2021-0082.
Nugroho, D. B. (2018). Comparative Analysis of Three MCMC Methods for Estimating GARCH Models. In IOP Conference Series: Materials Science and Engineering (Vol. 403, p. 012061). IOP Publishing. https://doi.org/10.1088/1757-899X/403/1/012061.
Nugroho, D. B., Mahatma, T., & Pratomo, Y. (2021a). Applying the non-linear transformation families to the lagged-variance of EGARCH and GJR models. IAENG International Journal of Applied Mathematics, 51(4), 908–919.
Nugroho, D. B., Mahatma, T., & Pratomo, Y. (2021b). GARCH Models under Power Transformed Returns: Empirical Evidence from International Stock Indices. Austrian Journal of Statistics, 50(4), 1–18. https://doi.org/10.17713/ajs.v50i4.1075.
Nugroho, D. B., & Morimoto, T. (2014). Realized non-linear stochastic volatility models with asymmetric effects and generalized student’s t-distribution. Journal of The Japan Statistical Society, 44(1), 83–118. https://doi.org/10.14490/jjss.44.83.
Nugroho, D. B., & Morimoto, T. (2015). Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods. Computational Statistics, 30(2), 491–516. https://doi.org/10.1007/s00180-014-0546-6.
Nugroho, D. B., & Morimoto, T. (2016). Box–Cox Realized Asymmetric Stochastic Volatility Models with Generalized Student’s t-Error Distributions. Journal of Applied Statistics, 43(10), 1906–1927. https://doi.org/10.1080/02664763.2015.1125862.
Nugroho, D. B., Susanto, B., & Rosely, M. M. M. (2018). Penggunaan MS Excel untuk Estimasi Model GARCH(1,1). Jurnal Matematika Integratif, 14(2), 71–83. https://doi.org/10.24198/jmi.v14.n2.17680.71-82.
Perry, M. B. (2018). Prediction Intervals for the Original Response when Using Manly’s Exponential Transformations. Quality Engineering, 30(2), 195–211. https://doi.org/10.1080/08982112.2017.1357827.
Rahman, I., Gani, R. A., & Achmad, I. Z. (2020). Persepsi Siswa Pada Pembelajaran Pendidikan Jasmani Olahraga Dan Kesehatan Tingkat Sma. Jurnal Pendidikan Olahraga, 9(2), 144–154. https://doi.org/10.31571/jpo.v9i2.1898.
Sumair, M., Aized, T., Asad, S., Gardezi, R., Mahmood, M., Bhutta, A., … Rehman, S. (2021). Application of five continuous distributions and evaluation of wind potential at five stations using normal distribution. Energy Exploration & Exploitation, 39(6), 2214–2239. https://doi.org/10.1177/0144598720939373.
Sutrisno, B. (2020). The Determinants of Stock Price Volatility in Indonesia. Economics and Accounting Journal, 3(1), 73–79. https://doi.org/10.32493/eaj.v3i1.y2020.p73-79.
Virginia, E., Ginting, J., & Elfaki, F. A. M. (2018). Application of GARCH model to forecast data and volatility of share price of energy (Study on Adaro Energy Tbk, LQ45). International Journal of Energy Economics and Policy, 8(3), 131–140.
Wijaya, M. T. (2021). Pemodelan GARCH berdasarkan ukuran realized kernel dan pengestimasian model menggunakan Solver GRG Non-Linear dan metode ARWM. Universitas Kristen Satya Wacana.
Yeasin, M., Singh, K. N., Lama, A., & Paul, R. K. (2020). Modelling volatility influenced by exogenous factors using an improved GARCH-X model. Journal of the Indian Society of Agricultural Statistics, 74(3), 209–216.
Zhang, H., & Lan, Q. (2014). GARCH-type model with continuous and jump variation for stock volatility and its empirical study in China. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/386721.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Didit Nugroho, Obed Dimitrio, Faldy Tita
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)