Analisis Sebaran Tingkat Kelembapan Tanah terhadap Lahan Sawah di Kabupaten Pati Menggunakan Citra Landsat 8 dan 9
Main Article Content
Abstract
Informasi kelembapan tanah sangat penting karena berkaitan dengan optimalisasi penggunaan lahan sawah yang dapat berdampak pada aktivitas bercocok tanam. Lahan sawah Kabupaten Pati tersebar pada wilayah dataran tinggi, dataran rendah, dan daerah dekat dengan pesisir yang menunjukkan tingkat kelembapan tanah berbeda-beda. Tujuan penelitian ini adalah melihat sejauh mana identifikasi kelembapan tanah menggunakan citra dan bagaimana sebaran kelembapan tanah pada lahan sawah di Kabupaten Pati. Pendugaan kondisi kelembapan tanah menggunakan algoritma Normalized Difference Moisture Index (NDMI) dengan memanfaatkan gelombang NIR (Near Infrared) dan SWIR (Shortwave Infrared). Hasil pengolahan citra menunjukkan tingkat kelembapan tanah di Kabupaten Pati selalu kering di Pati bagian selatan pada musim kemarau di mana sesuai dengan faktor yang memengaruhi yaitu jarak dari sungai serta curah hujan yang ada. Dilakukan validasi lapangan dengan hygrometer sebanyak 83 dari 84 titik sesuai dengan kondisi kelembapan tanah sebenarnya. Hasil regresi linier sederhana diperoleh koefisien determinasi (Multiple R-Squared) sebesar 72%, sehingga algoritma NDMI dapat digunakan mendeteksi kelembapan tanah dalam lahan sawah. Perlu diperhatikan tekait waktu penelitian tidak hanya pada musim kemarau saja dan menyesuaikan kalender tanam pada lahan sawah.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Media Komunikasi Geografi agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)
References
Achmad E., Hamzah, H., Albayudi, A., & Bima, B. (2019). Indeks Kelembapan Tanah Nasional Bukit Tiga Puluh Menggunakan Citra Satelit Landsat 8. Journal Badan Informasi Geospasial
Aggarwal, C. C. (2015). Data Mining. Springer International Publishing. https://doi.org/10.1007/978-3-319-14142-8
Berca, M., & Horoias, R. (2022). NDMI Use In Recognition of Water Stress Issues, Related to Winter Wheat Yields in Southern Romania. Scientific Papers: Management, Economic Engineering in Agriculture & Rural Development, 22(2).
Bidgoli, R. D., Koohbanani, H., Keshavarzi, A., & Kumar, V. (2020). Measurement and zonation of soil surface moisture in arid and semi-arid regions using Landsat 8 images. Arabian Journal of Geosciences, 13(17), 826. https://doi.org/10.1007/s12517-020-05837-2
Cahyono, B. E., Putri, P. O., Subekti, A., Nugroho, A. T., & Nishi, K. (2022). Analysis of soil moisture as an indicator of land quality using vegetation index (SAVI and NDMI) retrieved from remote sensing data in Jember - Indonesia. AIP Conference Proceedings, 2391. https://doi.org/10.1063/5.0078761
Kurniawan, R. (2016). Analisis Regresi. Prenada Media. https://books.google.co.id/books?id=KcY-DwAAQBAJ
Lobell, D. B., & Asner, G. P. (2002). Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, 66(3), 722–727. https://doi.org/10.2136/sssaj2002.7220
Mimić, G., Živaljević, B., Blagojević, D., Pejak, B., & Brdar, S. (2022). Quantifying the Effects of Drought Using the Crop Moisture Stress as an Indicator of Maize and Sunflower Yield Reduction in Serbia. Atmosphere, 13(11), 1880. https://doi.org/10.3390/atmos13111880
Nawangwulan, N. H., Sudarsono, B., & Sasmito, B. (2013). Analisis Pengaruh Perubahan Lahan Pertanian terhadap Hasil Produksi Tanaman Pangan di Kabupaten Pati Tahun 2001–2011. Jurnal Geodesi Undip, 2(2).
Ochtyra, A., Marcinkowska-Ochtyra, A., & Raczko, E. (2020). Threshold- and trend-based vegetation change monitoring algorithm based on the inter-annual multi-temporal normalized difference moisture index series: A case study of the Tatra Mountains. Remote Sensing of Environment, 249, 112026. https://doi.org/10.1016/j.rse.2020.112026
Sugiyono, D. (2013). Metode penelitian pendidikan pendekatan kuantitatif, kualitatif dan R&D.
Sun, L., Mi, X., Wei, J., Wang, J., Tian, X., Yu, H., & Gan, P. (2017). A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 70–88. https://doi.org/10.1016/j.isprsjprs.2016.12.005
USGS. (2023). Normalized Difference Moisture Index. USGS Science for a Changing World.