Optimization of Sales Data Forecasting Computation Process Using Parallel Computing in Cloud Environment

Authors

  • I Kadek Susila Satwika Institut Bisnis dan Teknologi Indonesia
  • I Putu Susila Handika Institut Bisnis dan Teknologi Indonesia

DOI:

https://doi.org/10.23887/janapati.v13i3.85278

Keywords:

Holt-Winters Exponential Smoothing, Modified Improved Particle Swarm Optimization, Parallel Computing, Cloud, Server

Abstract

The Holt-Winters Exponential Smoothing algorithm optimised using the Modified Improved Particle Swarm Optimization (MIPSO) algorithm is an algorithm that is able to provide good sales data forecasting results. However, there is a problem that when the iteration process is carried out using 1 computer, it takes a long time to finally get the test results. It is necessary to optimise the computational process to get more optimal and efficient results. This research will combine parallel computing technology and cloud computing technology to help speed up the computing process. The results of this research show that the more server used, the greater the reduction in execution time that occurs, because heavy computing tasks can be distributed more efficiently to many machines. This is evident from the comparison between single server and parallel server. Then the combination of more cores and servers produces the most optimal configuration in accelerating computation.

References

S. Septa and H. Hoirul, “Peran Big Data pada Sektor Industri Perdagangan: Tinjauan Literatur pada Perusahaan Bidang Perkantoran,” J. Off. Adm. Educ. Pract., vol. 2, no. 3, 2022, doi: 10.26740/joaep.v2n3.p198-210.

F. L. Chen and T. Y. Ou, “Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry,” Expert Syst. Appl., vol. 38, no. 3, 2011, doi: 10.1016/j.eswa.2010.07.014.

I. D. N. A. Manuaba, I. B. G. Manuaba, and M. Sudarma, “Komparasi Metode Peramalan Grey dan Grey-Markov untuk mengetahui Peramalan PNBP di Universitas Udayana,” Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, 2022, doi: 10.24843/mite.2022.v21i01.p12.

S. Sofiana, S. Suparti, A. R. Hakim, and I. Triutami, “PERAMALAN JUMLAH PENUMPANG PESAWAT DI BANDARA INTERNASIONAL AHMAD YANI DENGAN METODE HOLT WINTER’S EXPONENTIAL SMOOTHING DAN METODE EXPONENTIAL EMOOTHING EVENT BASED,” J. Gaussian, vol. 9, no. 4, 2020, doi: 10.14710/j.gauss.v9i4.29448.

J. N. A. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. I, 2022, doi: 10.55826/tmit.v1ii.8.

I Putu Susila Handika and I Kadek Susila Satwika, “Enhancing Sales Forecasting Accuracy Through Optimized Holt-Winters Exponential Smoothing with Modified Improved Particle Swarm Optimization,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 2, 2023, doi: 10.23887/janapati.v12i2.65462.

M. I. Malik, S. H. Wani, and A. Rashid, “CLOUD COMPUTING-TECHNOLOGIES,” Int. J. Adv. Res. Comput. Sci., vol. 9, no. 2, pp. 379–384, 2018.

M. H. Ahmed, S. Tiun, N. Omar, and N. S. Sani, “Short Text Clustering Algorithms, Application and Challenges: A Survey,” Applied Sciences (Switzerland), vol. 13, no. 1. 2023, doi: 10.3390/app13010342.

C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu, “Big Data and cloud computing: innovation opportunities and challenges,” International Journal of Digital Earth, vol. 10, no. 1. 2017, doi: 10.1080/17538947.2016.1239771.

Y. Liu et al., “A Cloud-computing and big data based wide area monitoring of power grids strategy,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 677, no. 4, doi: 10.1088/1757-899X/677/4/042055.

Y. Wang and S. Chen, “An approach to smart grid online data mining based on cloud computing,” Int. J. Simul. Syst. Sci. Technol., vol. 17, no. 2, 2016, doi: 10.5013/IJSSST.a.17.02.17.

X. Li, W. Zhuang, and H. Zhang, “Short-term Power Load Forecasting Based on Gate Recurrent Unit Network and Cloud Computing Platform,” 2020, doi: 10.1145/3424978.3425007.

R. Dan and A. Eigenface, “IMPLEMENTASI ALGORITMA PARTICLE SWARM OPTIMIZATION DAN KOMPUTASI PARALEL UNTUK MENYELESAIKAN PERSAMAAN ROSENBROCK DAN ALGORITMA EIGENFACE,” vol. 3, no. 2, pp. 113–122, 2016.

A. Syauqi and A. N. Hidayah, “Implementasi Komputasi Paralel untuk Optimalisasi Komputasi Pada Aplikasi Transliterasi Huruf Latin ke Aksara Jawa,” J. Online Inform., vol. 3, no. 1, 2018, doi: 10.15575/join.v3i1.179.

I. K. S. Satwika and I. D. P. Gede Wiyata Putra, “ANALISIS PERFORMANSI KINERJA SERVER MENGGUNAKAN TERMINAL SERVER BERBASIS WINDOWS DAN LINUX (Studi Kasus STMIK STIKOM Indonesia),” Netw. Eng. Res. Oper., vol. 5, no. 1, p. 30, 2020, doi: 10.21107/nero.v5i1.144.

M. H. P. Swari, I. K. S. Satwika, and I. P. S. Handika, “Performance Analysis of Sales Big Data Processing using Hadoop and Hive in Cloud Environment,” in 2020 6th Information Technology International Seminar (ITIS), Oct. 2020, pp. 162–166, doi: 10.1109/ITIS50118.2020.9320964.

A. M. Elshewey et al., “Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework,” Diagnostics, vol. 13, no. 22, 2023, doi: 10.3390/diagnostics13223439.

Q. Zhao and C. Li, “Two-Stage Multi-Swarm Particle Swarm Optimizer for Unconstrained and Constrained Global Optimization,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3007743.

A. L. White, J. Palmer, and G. M. Boynton, “Evidence of Serial Processing in Visual Word Recognition,” Psychol. Sci., vol. 29, no. 7, 2018, doi: 10.1177/0956797617751898.

D. Dotan and S. Dehaene, “Parallel and serial processes in number-to-quantity conversion,” Cognition, vol. 204, 2020, doi: 10.1016/j.cognition.2020.104387.

Downloads

Published

2024-12-01

How to Cite

I Kadek Susila Satwika, & I Putu Susila Handika. (2024). Optimization of Sales Data Forecasting Computation Process Using Parallel Computing in Cloud Environment. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 13(3), 722–731. https://doi.org/10.23887/janapati.v13i3.85278

Issue

Section

Articles