Balinese Script Handwriting Recognition Using CNN and ELM Hybrid Algorithms

Authors

  • I Gede Susrama Mas Diyasa Universitas Pembangunan Nasional Veteran Jawa Timur
  • Pandu Ali Wijaya university of Pembangunan Nasional Veteran Jawa Timur
  • Yisti Vita via university of Pembangunan Nasional Veteran Jawa Timur

Keywords:

Convolutional Neural Network, Extreme Learning Machine, Pattern Recognition, Balinese Script

Abstract

One of the foundational scripts used in Balinese culture is the Balinese script, known as “Aksara Bali”. In its writing, Aksara Bali follows specific rules regarding distinctive stroke shapes that must be carefully maintained to preserve authenticity and readability. This study proposes the use of a hybrid algorithm combining Convolutional Neural Network (CNN) and Extreme Learning Machine (ELM) to recognize handwritten Balinese script characters. The preprocessing stage includes dataset splitting, rescaling, data augmentation, batch size adjustment, and visualization of class distribution. The training stage utilizes the Adam Optimizer to enhance model accuracy. Using 1,691 images of various Balinese script characters, the dataset is divided into an 80:10:10 ratio for training, validation, and testing. Experimental results show that the best accuracy achieved is 91%, indicating that the CNN-ELM hybrid model effectively recognizes Balinese script characters.

References

Julianti D and I. Siagian, “Analisis Pengaruh Bahasa Daerah Terhadap Penggunaan Bahasa Indonesia,” INNOVATIVE: Journal Of Social Science Research, vol. 3, pp. 5829–5836, 2023.

A. Mulyanto, E. Susanti, F. Rosi, Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR)”, [Online]. Available: https://colab.research.google.com.

I. W. Wendra and A. A. S. Tantri, “Representasi Mewujudkan Ideologi Pancasila dan Prinsip Ajeg Bali pada Tulisan Opini Terbitan Surat Kabar Bali Post (Sebagai Alternatif Pemilihan Materi Pembelajaran Menulis Opini Berbasis Teks),” Diglosia: Jurnal Kajian Bahasa, Sastra, dan Pengajarannya, vol. 4, no. 4, pp. 461–472, Nov. 2021, doi: 10.30872/diglosia.v4i4.272.

I. K. A. G. Wiguna and A. Muliantara, “Introduction of Balinese Script Handwriting Using Zoning and Multilayer Perceptron,” ACSIE (International Journal of Application Computer Science and Informatic Engineering), vol. 1, no. 1, pp. 1–10, May 2019, doi: 10.33173/acsie.34.

I. B. A. I. Iswara, P. P. Santika, and I. N. S. W. Wijaya, 2019 5th International Conference on New Media Studies (CONMEDIA). IEEE, 2019.

A. Boukharouba and A. Bennia, “Novel feature extraction technique for the recognition of handwritten digits,” Applied Computing and Informatics, vol. 13, no. 1, pp. 19–26, Jan. 2017, doi: 10.1016/j.aci.2015.05.001.

K. S. Wibawa, P. W. Buana, I. P. A. Bayupati, and D. M. Sukarsa, “PENINGKATAN MINAT BELAJAR AKSARA BALI MELALUI MEDIA INTERAKTIF BERBASIS TEKNOLOGI INFORMASI DI LINGKUNGAN PENDIDIKAN ANAK USIA SEKOLAH DASAR,” 2021.

N. Adhi Santosa, A. A. Sagung Intan Pradnyanita, M. Arini Hanindharputri, P. Studi Desain Komunikasi Visual, and S. Tinggi Desain Bali, “KAJIAN EFEKTIVITAS PUZZLE GAME AKSARA BALI SEBAGAI MEDIA PENDUKUNG PEMBELAJARAN BAGI ANAK SEKOLAH DASAR DI DENPASAR,” Jurnal Nawala Visual | 64 JURNAL NAWALA VISUAL, vol. 1, no. 1, 2019, [Online]. Available: https://jurnal.std-bali.ac.id/index.php/nawalavisual

I. M. A. Dwisada, Ig. A. G. A. Kadyanan, and D. M. B. A. Darmawan, “Perancangan Rule Base Alih Aksara Bali menjadi Huruf Latin pada Naskah Kakawin Sardula Wikridita Darmawan”.

I. N. Suwija, Pasang aksara Bali. 2015.

A. Nata and S. Royal, “ANALISIS SISTEM PENDUKUNG KEPUTUSAN DENGAN MODEL KLASIFIKASI BERBASIS MACHINE LEARNING DALAM PENENTUAN PENERIMA PROGRAM INDONESIA PINTAR,” 2022. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

M. Riziq sirfatullah Alfarizi, M. Zidan Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “PENGGUNAAN PYTHON SEBAGAI BAHASA PEMROGRAMAN UNTUK MACHINE LEARNING DAN DEEP LEARNING,” 2023.

N. Khunafa Qudsi et al., “Identifikasi Citra Tulisan Tangan Digital Menggunakan Convolutional Neural Network (CNN),” 2019.

I. And and D. Expert, “Perbandingan Identifikasi Wajah Dengan Ekstraksi Fitur Haralick Dan CNN INFORMASI ARTIKEL A B S T R A K,” 2020. [Online]. Available: http://index.unper.ac.id

W. Muldayani et al., “IMPLEMENTASI SISTEM OBJECT TRACKING UNTUK MENDETEKSI DUA OBJEK BERBASIS DEEP LEARNING,” Jurnal SIMETRIS, vol. 14, no. 1, 2023.

G. C. Cardarilli et al., “A pseudo-softmax function for hardware-based high speed image classification,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-94691-7.

K. Chen et al., “State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine,” Green Energy and Intelligent Transportation, vol. 3, no. 1, Feb. 2024, doi: 10.1016/j.geits.2024.100151.

Y. Afrillia, L. Rosnita, and D. Siska, “Analisis Sentimen Ciutan Twitter Terkait Penerapan Permendikbudristek Nomor 30 Tahun 2021 Menggunakan TextBlob dan Support Vector Machine,” G-Tech: Jurnal Teknologi Terapan, vol. 6, no. 2, pp. 387–394, Oct. 2022, doi: 10.33379/gtech.v6i2.1778.

W. M. Pradnya D and A. P. Kusumaningtyas, “Analisis Pengaruh Data Augmentasi Pada Klasifikasi Bumbu Dapur Menggunakan Convolutional Neural Network,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 2022, Oct. 2022, doi: 10.30865/mib.v6i4.4201.

J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2688.

M. Resa Arif Yudianto and H. Al Fatta, “ANALISIS PENGARUH TINGKAT AKURASI KLASIFIKASI CITRA WAYANG DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK,” 2020

Published

2025-03-31

How to Cite

Mas Diyasa, I. G. S., Wijaya, P. A. ., & via, Y. V. . (2025). Balinese Script Handwriting Recognition Using CNN and ELM Hybrid Algorithms. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 14(1). Retrieved from https://ejournal.undiksha.ac.id./index.php/janapati/article/view/87524

Issue

Section

Articles