Balinese Script Handwriting Recognition Using CNN and ELM Hybrid Algorithms
Keywords:
Convolutional Neural Network, Extreme Learning Machine, Pattern Recognition, Balinese ScriptAbstract
One of the foundational scripts used in Balinese culture is the Balinese script, known as “Aksara Bali”. In its writing, Aksara Bali follows specific rules regarding distinctive stroke shapes that must be carefully maintained to preserve authenticity and readability. This study proposes the use of a hybrid algorithm combining Convolutional Neural Network (CNN) and Extreme Learning Machine (ELM) to recognize handwritten Balinese script characters. The preprocessing stage includes dataset splitting, rescaling, data augmentation, batch size adjustment, and visualization of class distribution. The training stage utilizes the Adam Optimizer to enhance model accuracy. Using 1,691 images of various Balinese script characters, the dataset is divided into an 80:10:10 ratio for training, validation, and testing. Experimental results show that the best accuracy achieved is 91%, indicating that the CNN-ELM hybrid model effectively recognizes Balinese script characters.
References
Julianti D and I. Siagian, “Analisis Pengaruh Bahasa Daerah Terhadap Penggunaan Bahasa Indonesia,” INNOVATIVE: Journal Of Social Science Research, vol. 3, pp. 5829–5836, 2023.
A. Mulyanto, E. Susanti, F. Rosi, Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR)”, [Online]. Available: https://colab.research.google.com.
I. W. Wendra and A. A. S. Tantri, “Representasi Mewujudkan Ideologi Pancasila dan Prinsip Ajeg Bali pada Tulisan Opini Terbitan Surat Kabar Bali Post (Sebagai Alternatif Pemilihan Materi Pembelajaran Menulis Opini Berbasis Teks),” Diglosia: Jurnal Kajian Bahasa, Sastra, dan Pengajarannya, vol. 4, no. 4, pp. 461–472, Nov. 2021, doi: 10.30872/diglosia.v4i4.272.
I. K. A. G. Wiguna and A. Muliantara, “Introduction of Balinese Script Handwriting Using Zoning and Multilayer Perceptron,” ACSIE (International Journal of Application Computer Science and Informatic Engineering), vol. 1, no. 1, pp. 1–10, May 2019, doi: 10.33173/acsie.34.
I. B. A. I. Iswara, P. P. Santika, and I. N. S. W. Wijaya, 2019 5th International Conference on New Media Studies (CONMEDIA). IEEE, 2019.
A. Boukharouba and A. Bennia, “Novel feature extraction technique for the recognition of handwritten digits,” Applied Computing and Informatics, vol. 13, no. 1, pp. 19–26, Jan. 2017, doi: 10.1016/j.aci.2015.05.001.
K. S. Wibawa, P. W. Buana, I. P. A. Bayupati, and D. M. Sukarsa, “PENINGKATAN MINAT BELAJAR AKSARA BALI MELALUI MEDIA INTERAKTIF BERBASIS TEKNOLOGI INFORMASI DI LINGKUNGAN PENDIDIKAN ANAK USIA SEKOLAH DASAR,” 2021.
N. Adhi Santosa, A. A. Sagung Intan Pradnyanita, M. Arini Hanindharputri, P. Studi Desain Komunikasi Visual, and S. Tinggi Desain Bali, “KAJIAN EFEKTIVITAS PUZZLE GAME AKSARA BALI SEBAGAI MEDIA PENDUKUNG PEMBELAJARAN BAGI ANAK SEKOLAH DASAR DI DENPASAR,” Jurnal Nawala Visual | 64 JURNAL NAWALA VISUAL, vol. 1, no. 1, 2019, [Online]. Available: https://jurnal.std-bali.ac.id/index.php/nawalavisual
I. M. A. Dwisada, Ig. A. G. A. Kadyanan, and D. M. B. A. Darmawan, “Perancangan Rule Base Alih Aksara Bali menjadi Huruf Latin pada Naskah Kakawin Sardula Wikridita Darmawan”.
I. N. Suwija, Pasang aksara Bali. 2015.
A. Nata and S. Royal, “ANALISIS SISTEM PENDUKUNG KEPUTUSAN DENGAN MODEL KLASIFIKASI BERBASIS MACHINE LEARNING DALAM PENENTUAN PENERIMA PROGRAM INDONESIA PINTAR,” 2022. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR
M. Riziq sirfatullah Alfarizi, M. Zidan Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “PENGGUNAAN PYTHON SEBAGAI BAHASA PEMROGRAMAN UNTUK MACHINE LEARNING DAN DEEP LEARNING,” 2023.
N. Khunafa Qudsi et al., “Identifikasi Citra Tulisan Tangan Digital Menggunakan Convolutional Neural Network (CNN),” 2019.
I. And and D. Expert, “Perbandingan Identifikasi Wajah Dengan Ekstraksi Fitur Haralick Dan CNN INFORMASI ARTIKEL A B S T R A K,” 2020. [Online]. Available: http://index.unper.ac.id
W. Muldayani et al., “IMPLEMENTASI SISTEM OBJECT TRACKING UNTUK MENDETEKSI DUA OBJEK BERBASIS DEEP LEARNING,” Jurnal SIMETRIS, vol. 14, no. 1, 2023.
G. C. Cardarilli et al., “A pseudo-softmax function for hardware-based high speed image classification,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-94691-7.
K. Chen et al., “State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine,” Green Energy and Intelligent Transportation, vol. 3, no. 1, Feb. 2024, doi: 10.1016/j.geits.2024.100151.
Y. Afrillia, L. Rosnita, and D. Siska, “Analisis Sentimen Ciutan Twitter Terkait Penerapan Permendikbudristek Nomor 30 Tahun 2021 Menggunakan TextBlob dan Support Vector Machine,” G-Tech: Jurnal Teknologi Terapan, vol. 6, no. 2, pp. 387–394, Oct. 2022, doi: 10.33379/gtech.v6i2.1778.
W. M. Pradnya D and A. P. Kusumaningtyas, “Analisis Pengaruh Data Augmentasi Pada Klasifikasi Bumbu Dapur Menggunakan Convolutional Neural Network,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 2022, Oct. 2022, doi: 10.30865/mib.v6i4.4201.
J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2688.
M. Resa Arif Yudianto and H. Al Fatta, “ANALISIS PENGARUH TINGKAT AKURASI KLASIFIKASI CITRA WAYANG DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK,” 2020
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I Gede Susrama Mas Diyasa, Pandu Ali Wijaya, Yisti Vita via

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Janapati agree to the following terms:- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)