PENGEMBANGAN PERANGKAT PEMBELAJARAN SAINTIFIK DENGAN MODEL PROBLEM BASED LEARNING MELALUI PENALARAN INDUKTIF PADA TOPIK LAJU REAKSI

Penulis

  • I. B. N. Sudria Universitas Pendidikan Ganesha
  • I Gusti Lanang Wiratma Universitas Pendidikan Ganesha
  • Lysa Kristina Br Sembiring Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.23887/jpk.v3i1.20946

Abstrak

Abstrak

Tujuan dari penelitian dan pengembangan pendidikan  ini adalah untuk (1) mengembangkan dan mendeskripsikan karakteristik perangkat pembelajaran yang selaras dengan model problem based learning melalui penalaran induktif pada topik laju reaksi. (2) mendeskripsikan validitas dan tingkat keterbacaan, dan (3) mengetahui keefektifan dari perangkat pembelajaran melalui uji coba pendahulu. Penelitian dan pengembangan (R&D) ini mengikuti model Borg dan Gall (1989) yang dibatasi pada tahap uji coba pendahuluan. Hasil penelitian dan pengembangan ini mampu mewujudkan perangkat pembelajaran model problem based learning dengan efektif. Perangkata pembelajaran yang dikembangkan dapat menghasilkan perangkat yang konsisten dan selaras mengikuti model problem based learning melalui penalaran induktif dengan pendekatan saintifik, memiliki tingkat validitas dan uji keterbacaan sangat baik dan baik., mendapatkan hasil belajar yang signifikan dengan nilai Normalitas Gain Score 0,55 dengan kategori sedang secara keseluruhan, penilian perindikator termasuk kategori tinggi untuk satu indikator dan sedang untuk enam indikator, peningkatan rata-rata pretest 23,27 menjadi rata-rata posttest 65,18, penilian aktivitas siswa dengan pendekatan saintifik 5 M dilihat dari penilian LKS secara umum meningkat, dan hasil tanggapan siswa terhadap proses pembelajaran dengan model problem based learning malalui penalaran induktif tergolong baik.

Kata Kunci: model pembelajaran problem based learning,  laju reaksi, penalaran induktif, pendekatan saintifik, dan perangkat pembelajaran


Abstract


The purpose of this research and development education are to (1) develop and describe characteristics of learning devices that are in harmony with the problem based learning model through inductive reasoning on the topic of reaction rates, (2) describing the validity and readability level, and (3) knowing the effectiveness of learning device through a preliminary trial. This research and development (R & D) follows the Borg and Gall (1989) model which was limited to the preceding trial stage. The results of this research and development are able to realize a problem based learning model learning device effectively. It can, the results show that learning devices are consistent and harmonious can follow the problem based learning model through inductive reasoning with a scientific approach, have a very good and good level of validity and readability test, get significant learning outcomes with nilia Normality Gain Score 0.55 with categories is being Indicator evaluators are included in the high category for one indicator and medium for six indicators. The increase in the average pretest 23.27 becomes the average posttest 65.18, the assessment of student activity with the scientific approach 5 M seen from the LKS assessment generally increases, and the results of student responses to the learning process with problem based learning models through inductive reasoning are good .

Keywords: problem based learning model, reaction rate, inductive reasoning, saintific approach, and learning tool

Referensi

American Association for the Advancement of Scinece (AAAS). 1993. Benchmarks for Science Literacy: Project 2061. NewYork : Oxford University Press.

Amisyah, S., Sarong, M.A., & Nurmaliah, C. 2013. Upaya Peningkatan Hasil Belajar Kognitif melalui Model Problem Based Learning. Jurnal Biotik,

I(2), 67-136.

Arends, R. I. 2008. Belajar Untuk Mengajar (Terjemahan Helly Prajitno Soetjipto & Sri Mulyantini Soetjipto). New York: MeGraw Hils.

Arikunto, S. 2010. Dasar-Dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara.

Arviani, V. 2011. Identifikasi Pemahaman Konsep Laju Reaksi Siswa Kelas XI SMA Brawijaya Smart Schoo. http://karyailmiah.um.ac.id/. Diakses tanggal 4 september 2018

Bruner, J. (1966. Toward a theory of instruction. Cambridge, MA: Belknap Press of Harvard University Press.

Borg, W. R., & Gall, M. D. 1989. Educational Research: An Introduction. New York: NY Longman.

Cakmaci, G., Leach, J. & Donnelly, J. 2006. Students’ideas about reaction rate and its relationship with concentration or pressure. International Journal of Science Education, 28(15), 1795-1815.

Candiasa, I M. 2010. Pengujian Instrumen Penelitian Disertai Aplikasi ITEMAN dan BIGSTEPS. Singaraja: Unit Penerbitan Universitas Pendidikan Ganesha.

Carin, A. A., & Sund, R. 1975. Teaching Science Through Discovery. Ohio: Charles E. Meril Publisher.

Chiappetta, E. L., Koballa, T. R., & Collette, A. T. 1998. Science Instruction in the Middle and Secondary School, 4th Edition. Upper Saddle River, NJ: Merril/Prentice Hall.

Dick, W., & Carey, L. 1990. The Systematic Design of Instruction third Edition . United State: HarperCollinsPublisher.

Felder, R. M., & Silverman, L. K. 1988. Learning and Teaching Styles in Engineering Education. Engr. Education, 78(7), 674-681.

Fogarty, R. 1997. Problem Based Learning and Other Curiculum Moels for the Multiple Intelligencess Classroom. Arlington Heights Illionis: Sky Light.

Hake, R, R. 1999. Analyzing Change/Gain Score. AREA-D American Education Research Association’s Devision.D, Measurement and Reasearch Methodology

Hind , A., Leach, J., & Ryder, J. 2001. Teaching about the Nature of Scientific Knowledge and Investigation on AS/A Level Science Course. West Yorkshire: The Nuffield Foundation .

Indriani, N. P. 2014. Siklus Belajar Deduktif-Hipotetik untuk Mendukung Efektivitas Belajar Proses Sains Siswa. Skripsi tidak dipublikasikan. Singaraja: Universitas Pendidikan Ganesha.

Johnstone, A. H. 1991. Why is Science Difficult to Learn? Things are Seldom What They Seem. Journal of Computer Assisted Learning, 75-83.

Koyan, I.W. 2012. Statistik Pendidikan Teknik Analisis Data Kuantitatif. Singaraja: Undiksha press.

OECD. 2016. PISA 2015 Result in focus. Diakses pada 20 desember 2017 dari https://www.oecd.org/PISA

Kemendikbud. 2016. Peraturan Mentri Pendidikan Dan Kebudayaan Nomor 24 Tahun 2016 Tentang Kompetensi Inti Dan Kompetensi Dasar Pelajaran Pada Kurikulum 2013 Pada Pendidikan Dasar Dan Pendidikan Menengah.

Subagia, I. W. 2013. Implementasi Pendekatan Ilmiah dalam Kurikulum 2013 untuk Mewujudnyatakan Tujuan Pendidikan Nasional. Seminar Nasional FMIPA Undiksha III (hal. 16-29). Singaraja: Universitas Pendidikan Ganesha.

Sudria, I. B., Kartowasono, N., Frieda, N., & Sya'ban, S. 2013. Pengembangan Perangkat Pembelajaran Kimia dengan Pendekatan Berpikir Induktif dan Deduktif. Laporan Penelitia, tidak dipublikasikan.

Sudria, I.B.N. & Sya’ban, S,. 2015. Pengembangan Perangkat Pembelajaran dengan Pola Berpikir Induktif dan Deduktif untuk Pembinaan Keterampilan Saintifik Siswa Sekolah Menengah. Laporan Penelitian tidak dipublikasikan.

Suja, I. W. 2007. Kajian Pustaka: Keterampilan Proses Sains dengan Pendekatan Sains Teknologi Masyarakat dan Lingkungan. Singaraja: Universitas Pendidikan Ganesha.

Susdarwati, dkk. 2016. Pengembangan Perangkat Pembelajaran Fisika Berbasis Problem Based Learning (PBL) Pada Materi Hukum Newton dan Penerapannya kelas X SMA 2 Mejan. fkip.uns.ac.id/index.php/sains Universitas Sebelas Maret.

Tan, O. S. 2003. Problem Based Learning Innovation. Singapore: Thomson Learning.

Thomond, P. N. 2004. Exploring and Describing Management Action for the Pursuit of Distruptive Innovation. Doctor Thesis. Cranfield University. Diakses 2 Januari 2018 dari space.lib.cranfield.ac.uk/ .../ P.%20 Thomond% 20Thesis%202004.pdf.

Diterbitkan

2019-09-18

Cara Mengutip

Sudria, I. B. N., Lanang Wiratma, I. G., & Br Sembiring, L. K. (2019). PENGEMBANGAN PERANGKAT PEMBELAJARAN SAINTIFIK DENGAN MODEL PROBLEM BASED LEARNING MELALUI PENALARAN INDUKTIF PADA TOPIK LAJU REAKSI. Jurnal Pendidikan Kimia Indonesia, 3(1), 32–45. https://doi.org/10.23887/jpk.v3i1.20946

Terbitan

Bagian

Articles