Analisis Penyerapan Energi Tabung Crash Ganda Variasi Bentuk Tabung Dalam Menggunakan Polycarbonate

Double Crash Tube Energy Absorption Analysis of Inner Tube Shape Variations Using Polycarbonate

Authors

  • Muh Farid Hidayat Akademi Komunitas Industri Manufaktur Bantaeng, Indonesia https://orcid.org/0000-0003-1958-6219
  • Mahlina Ekawati Akademi Komunitas Industri Manufaktur Bantaeng, Indonesia
  • Roberth M Ratlalan Akademi Komunitas Industri Manufaktur Bantaeng, Indonesia

DOI:

https://doi.org/10.23887/jptm.v13i1.92763

Keywords:

crashworthiness, metode elemen hingga, polycarbonate, tabung crash ganda

Abstract

Tabung crash merupakan komponen penting dalam sistem keselamatan kendaraan yang berfungsi untuk menyerap energi benturan guna mengurangi dampak tabrakan terhadap penumpang. Penelitian ini bertujuan untuk menganalisis karakteristik crashworthiness dari crash box ganda yang terdiri dari tabung luar berbentuk lingkaran dan tabung dalam dengan variasi bentuk, yaitu bulat, segitiga, segiempat, segilima, segienam, segitujuh, dan segidelapan. Material yang digunakan adalah Polycarbonate yang memiliki kekuatan mekanik baik serta ketahanan terhadap panas dan benturan. Simulasi dilakukan menggunakan metode elemen hingga dengan pembebanan aksial tipe tekanan pressure untuk mengevaluasi parameter crashworthiness, termasuk gaya maksimum, energi serap spesifik, dan efisiensi gaya tekan. Hasil simulasi menunjukkan bahwa tabung dalam berbentuk segitiga memiliki nilai total energi serap tertinggi sebesar 115.96 J dan energi serap spesifik terbaik sebesar 8.28 kJ/kg. Sedangkan tabung dalam berbentuk segitujuh memiliki energi serap terendah sebesar 96.09 J. Tabung dalam berbentuk segiempat memiliki gaya rata-rata tertinggi sebesar 2.82 kN. Berdasarkan hasil ini, tabung crash bagian dalam dengan bentuk segitiga dapat dikategorikan sebagai bentuk yang paling optimal dalam meningkatkan performa crashworthiness dari tabung crash ganda berbahan polycarbonate.

References

Dastjerdi, A. A., Shahsavari, H., Eyvazian, A., & Tarlochan, F. (2019). Crushing analysis and multi-objective optimization of different length bi-thin walled cylindrical structures under axial impact loading. Engineering Optimization, 0(0), 1–18. https://doi.org/10.1080/0305215X.2018.1562551

Dionisius, F., Istiyanto, J., Endramawan, T., & Andri. (2018). Optimasi Desain Crashworthiness pada Tabung Persegi Berdinding Tipis Dengan Variasi Crush Initiator : Stripe - Parallelogram - Trigon. Jurnal Teknologi Terapan (JTT), 4(1), 48–54. https://doi.org/10.1016/j.matdes.2018.07.008

G, B., & K, A. (2019). Numerical investigation of honeycomb filled crash box for the effect of honeycomb’s physical parameters on crashworthiness constants. International Journal of Crashworthiness, 24(2), 184–198. https://doi.org/10.1080/13588265.2018.1424298

Hafad, S. A., Hamood, A. F., Alsalihi, H. A., Ibrahim, S. I., Abdullah, A. A., Radhi, A. A., Al-Ghezi, M. K., & Alogaidi, B. R. (2021). Mechanical properties study of polycarbonate and other thermoplastic polymers. Journal of Physics: Conference Series, 1973(1). https://doi.org/10.1088/1742-6596/1973/1/012001

Hao, B., & Lin, G. (2020). 3D Printing Technology and Its Application in Industrial Manufacturing. IOP Conference Series: Materials Science and Engineering, 782(2). https://doi.org/10.1088/1757-899X/782/2/022065

Hidayat, D., Istiyanto, J., Sumarsono, D. A., Kurniawan, F., Ardiansyah, R., Wandono, F. A., & Nugroho, A. (2023). Investigation on the Crashworthiness Performance of Thin-Walled Multi-Cell PLA 3D-Printed Tubes: A Multi-Parameter Analysis. Designs, 7(5), 1–20. https://doi.org/10.3390/designs7050108

Jie, L., & Lin, D. (2014). Influence of material properties on automobile energy-absorbing components crashworthiness. Open Mechanical Engineering Journal, 8(1), 113–116. https://doi.org/10.2174/1874155X20140501002

Liu, Y. J., Xia, C. Y., Ding, L., & Liu, C. H. (2013). Influence of material on automotive crash-box crashworthiness subjected to low velocity impact. Advanced Materials Research, 655–657, 169–172. https://doi.org/10.4028/www.scientific.net/AMR.655-657.169

M. Shah, M. K., Noorhifiantylaily, A., Wani, O. I., & Sahari, J. (2016). Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by using Computational Mechanics. International Journal of Materials and Metallurgical Engineering, 10(8), 1170–1175.

Mirzaei, M., Shakeri, M., Sadighi, M., & Akbarshahi, H. (2011). Crashworthiness design for cylindrical tube using neural network and genetic algorithm. Procedia Engineering, 14, 3346–3353. https://doi.org/10.1016/j.proeng.2011.07.423

Renreng, I., Hidayat, M. F., & Djamaluddin, F. (2020). Crashworthiness analysis of octagonal-inner double tube with different thickness under offaxis oblique load. International Journal of Mechanics, 14, 226–232. https://doi.org/10.46300/9104.2020.14.29

Stein, M., Schwanitz, P., & Sankarasubramanian, H. (2012). Unified parametric car model – A simplified model for frontal crash safety. 11.LS-Dyna Forum. http://www.dynamore.de/de/download/papers/ls-dyna-forum-2012/documents/crash-3-3

Tao, C., Zhou, X., Liu, Z., Liang, X., Zhou, W., & Li, H. (2023). Crashworthiness Study of 3D Printed Lattice Reinforced Thin-Walled Tube Hybrid Structures. Materials, 16(5). https://doi.org/10.3390/ma16051871

Taylor, P., Hooputra, H., Gese, H., Dell, H., Werner, H., Hooputra, H., Gese, H., Dell, H., & Werner, H. (n.d.). A comprehensive failure model for crashworthiness simulation of aluminium extrusions A comprehensive failure model for crashworthiness simulation of aluminium extrusions. November 2012, 37–41. https://doi.org/10.1533/ijcr.2004.0289

Velmurugan, R., & Muralikannan, R. (2009). Energy absorption characteristics of annealed steel tubes of various cross sections in static and dynamic loading. Latin American Journal of Solids and Structures, 6(4), 385–412.

Downloads

Published

2025-03-30

Issue

Section

Articles